Commit | Line | Data |
---|---|---|
b7cd987d BA |
1 | % Generated by roxygen2: do not edit by hand |
2 | % Please edit documentation in R/main.R | |
3 | \name{claws} | |
4 | \alias{claws} | |
5 | \title{CLAWS: CLustering with wAvelets and Wer distanceS} | |
6 | \usage{ | |
7 | claws(getSeries, K1, K2, wf, ctype, WER = "end", random = TRUE, | |
8 | ntasks = 1, ncores_tasks = 1, ncores_clust = 4, | |
9 | nb_series_per_chunk = 50 * K1, min_series_per_chunk = 5 * K1, sep = ",", | |
10 | nbytes = 4, endian = .Platform$endian, verbose = FALSE, parll = TRUE) | |
11 | } | |
12 | \arguments{ | |
13 | \item{getSeries}{Access to the (time-)series, which can be of one of the three | |
14 | following types: | |
15 | \itemize{ | |
16 | \item [big.]matrix: each line contains all the values for one time-serie, ordered by time | |
17 | \item connection: any R connection object providing lines as described above | |
18 | \item character: name of a CSV file containing series in rows (no header) | |
19 | \item function: a custom way to retrieve the curves; it has only one argument: | |
20 | the indices of the series to be retrieved. See examples | |
21 | }} | |
22 | ||
23 | \item{K1}{Number of super-consumers to be found after stage 1 (K1 << N)} | |
24 | ||
25 | \item{K2}{Number of clusters to be found after stage 2 (K2 << K1)} | |
26 | ||
27 | \item{wf}{Wavelet transform filter; see ?wavelets::wt.filter} | |
28 | ||
29 | \item{ctype}{Type of contribution: "relative" or "absolute" (or any prefix)} | |
30 | ||
31 | \item{WER}{"end" to apply stage 2 after stage 1 has fully iterated, or "mix" to apply stage 2 | |
32 | at the end of each task} | |
33 | ||
34 | \item{random}{TRUE (default) for random chunks repartition} | |
35 | ||
36 | \item{ntasks}{Number of tasks (parallel iterations to obtain K1 medoids); default: 1. | |
37 | Note: ntasks << N, so that N is "roughly divisible" by N (number of series)} | |
38 | ||
39 | \item{ncores_tasks}{"MPI" number of parallel tasks (1 to disable: sequential tasks)} | |
40 | ||
41 | \item{ncores_clust}{"OpenMP" number of parallel clusterings in one task} | |
42 | ||
43 | \item{nb_series_per_chunk}{(~Maximum) number of series in each group, inside a task} | |
44 | ||
45 | \item{min_series_per_chunk}{Minimum number of series in each group} | |
46 | ||
47 | \item{sep}{Separator in CSV input file (if any provided)} | |
48 | ||
49 | \item{nbytes}{Number of bytes to serialize a floating-point number; 4 or 8} | |
50 | ||
51 | \item{endian}{Endianness to use for (de)serialization. Use "little" or "big" for portability} | |
52 | ||
53 | \item{verbose}{Level of verbosity (0/FALSE for nothing or 1/TRUE for all; devel stage)} | |
54 | ||
55 | \item{parll}{TRUE to fully parallelize; otherwise run sequentially (debug, comparison)} | |
56 | } | |
57 | \value{ | |
58 | A big.matrix of the final medoids curves (K2) in rows | |
59 | } | |
60 | \description{ | |
61 | Groups electricity power curves (or any series of similar nature) by applying PAM | |
62 | algorithm in parallel to chunks of size \code{nb_series_per_chunk}. Input series | |
63 | must be sampled on the same time grid, no missing values. | |
64 | } | |
65 | \examples{ | |
66 | \dontrun{ | |
67 | # WER distances computations are a bit too long for CRAN (for now) | |
68 | ||
69 | # Random series around cos(x,2x,3x)/sin(x,2x,3x) | |
70 | x = seq(0,500,0.05) | |
71 | L = length(x) #10001 | |
72 | ref_series = matrix( c(cos(x), cos(2*x), cos(3*x), sin(x), sin(2*x), sin(3*x)), | |
73 | byrow=TRUE, ncol=L ) | |
74 | library(wmtsa) | |
75 | series = do.call( rbind, lapply( 1:6, function(i) | |
76 | do.call(rbind, wmtsa::wavBootstrap(ref_series[i,], n.realization=400)) ) ) | |
77 | #dim(series) #c(2400,10001) | |
78 | medoids_ascii = claws(series, K1=60, K2=6, "d8", "rel", nb_series_per_chunk=500) | |
79 | ||
80 | # Same example, from CSV file | |
81 | csv_file = "/tmp/epclust_series.csv" | |
82 | write.table(series, csv_file, sep=",", row.names=FALSE, col.names=FALSE) | |
83 | medoids_csv = claws(csv_file, K1=60, K2=6, "d8", "rel", nb_series_per_chunk=500) | |
84 | ||
85 | # Same example, from binary file | |
86 | bin_file = "/tmp/epclust_series.bin" | |
87 | nbytes = 8 | |
88 | endian = "little" | |
89 | epclust::binarize(csv_file, bin_file, 500, nbytes, endian) | |
90 | getSeries = function(indices) getDataInFile(indices, bin_file, nbytes, endian) | |
91 | medoids_bin = claws(getSeries, K1=60, K2=6, "d8", "rel", nb_series_per_chunk=500) | |
92 | unlink(csv_file) | |
93 | unlink(bin_file) | |
94 | ||
95 | # Same example, from SQLite database | |
96 | library(DBI) | |
97 | series_db <- dbConnect(RSQLite::SQLite(), "file::memory:") | |
98 | # Prepare data.frame in DB-format | |
99 | n = nrow(series) | |
100 | time_values = data.frame( | |
101 | id = rep(1:n,each=L), | |
102 | time = rep( as.POSIXct(1800*(0:n),"GMT",origin="2001-01-01"), L ), | |
103 | value = as.double(t(series)) ) | |
104 | dbWriteTable(series_db, "times_values", times_values) | |
105 | # Fill associative array, map index to identifier | |
106 | indexToID_inDB <- as.character( | |
107 | dbGetQuery(series_db, 'SELECT DISTINCT id FROM time_values')[,"id"] ) | |
108 | getSeries = function(indices) { | |
109 | request = "SELECT id,value FROM times_values WHERE id in (" | |
110 | for (i in indices) | |
111 | request = paste(request, i, ",", sep="") | |
112 | request = paste(request, ")", sep="") | |
113 | df_series = dbGetQuery(series_db, request) | |
114 | # Assume that all series share same length at this stage | |
115 | ts_length = sum(df_series[,"id"] == df_series[1,"id"]) | |
116 | t( as.matrix(df_series[,"value"], nrow=ts_length) ) | |
117 | } | |
118 | medoids_db = claws(getSeries, K1=60, K2=6, "d8", "rel", nb_series_per_chunk=500) | |
119 | dbDisconnect(series_db) | |
120 | ||
121 | # All computed medoids should be the same: | |
122 | digest::sha1(medoids_ascii) | |
123 | digest::sha1(medoids_csv) | |
124 | digest::sha1(medoids_bin) | |
125 | digest::sha1(medoids_db) | |
126 | } | |
127 | } |