| 1 | #include <math.h> |
| 2 | #include <stdlib.h> |
| 3 | |
| 4 | void ml_predict_noNA(double* X, double* Y, int* n_, int* K_, double* alpha_, int* grad_, double* weight) |
| 5 | { |
| 6 | int K = *K_; |
| 7 | int n = *n_; |
| 8 | double alpha = *alpha_; |
| 9 | int grad = *grad_; |
| 10 | |
| 11 | //at least two experts to combine: various inits |
| 12 | double initWeight = 1. / K; |
| 13 | for (int i=0; i<K; i++) |
| 14 | weight[i] = initWeight; |
| 15 | double* error = (double*)malloc(K*sizeof(double)); |
| 16 | double* cumDeltaError = (double*)calloc(K, sizeof(double)); |
| 17 | double* regret = (double*)calloc(K, sizeof(double)); |
| 18 | |
| 19 | //start main loop |
| 20 | for (int t=0; t<n; t++ < n) |
| 21 | { |
| 22 | if (grad) |
| 23 | { |
| 24 | double hatY = 0.; |
| 25 | for (int i=0; i<K; i++) |
| 26 | hatY += X[t*K+i] * weight[i]; |
| 27 | for (int i=0; i<K; i++) |
| 28 | error[i] = 2. * (hatY - Y[t]) * X[t*K+i]; |
| 29 | } |
| 30 | else |
| 31 | { |
| 32 | for (int i=0; i<K; i++) |
| 33 | { |
| 34 | double delta = X[t*K+i] - Y[t]; |
| 35 | error[i] = delta * delta; |
| 36 | } |
| 37 | } |
| 38 | |
| 39 | double hatError = 0.; |
| 40 | for (int i=0; i<K; i++) |
| 41 | hatError += error[i] * weight[i]; |
| 42 | for (int i=0; i<K; i++) |
| 43 | { |
| 44 | double deltaError = hatError - error[i]; |
| 45 | cumDeltaError[i] += deltaError * deltaError; |
| 46 | regret[i] += deltaError; |
| 47 | double eta = 1. / (1. + cumDeltaError[i]); |
| 48 | weight[i] = regret[i] > 0. ? eta * regret[i] : 0.; |
| 49 | } |
| 50 | |
| 51 | double sumWeight = 0.0; |
| 52 | for (int i=0; i<K; i++) |
| 53 | sumWeight += weight[i]; |
| 54 | for (int i=0; i<K; i++) |
| 55 | weight[i] /= sumWeight; |
| 56 | //redistribute weights if alpha > 0 (all weights are 0 or more, sum > 0) |
| 57 | for (int i=0; i<K; i++) |
| 58 | weight[i] = (1. - alpha) * weight[i] + alpha/K; |
| 59 | } |
| 60 | |
| 61 | free(error); |
| 62 | free(cumDeltaError); |
| 63 | free(regret); |
| 64 | } |