| 1 | #' computeGridLambda |
| 2 | #' |
| 3 | #' Construct the data-driven grid for the regularization parameters used for the Lasso estimator |
| 4 | #' |
| 5 | #' @param phiInit value for phi |
| 6 | #' @param rhoInit for rho |
| 7 | #' @param piInit for pi |
| 8 | #' @param gamInit value for gamma |
| 9 | #' @param X matrix of covariates (of size n*p) |
| 10 | #' @param Y matrix of responses (of size n*m) |
| 11 | #' @param gamma power of weights in the penalty |
| 12 | #' @param mini minimum number of iterations in EM algorithm |
| 13 | #' @param maxi maximum number of iterations in EM algorithm |
| 14 | #' @param eps threshold to stop EM algorithm |
| 15 | #' @param fast boolean to enable or not the C function call |
| 16 | #' |
| 17 | #' @return the grid of regularization parameters for the Lasso estimator. The output is a vector with nonnegative values that are relevant |
| 18 | #' to be considered as regularization parameter as they are equivalent to a 0 in the regression parameter. |
| 19 | #' |
| 20 | #' @export |
| 21 | computeGridLambda <- function(phiInit, rhoInit, piInit, gamInit, X, Y, gamma, mini, |
| 22 | maxi, eps, fast) |
| 23 | { |
| 24 | n <- nrow(X) |
| 25 | p <- ncol(X) |
| 26 | m <- ncol(Y) |
| 27 | k <- length(piInit) |
| 28 | |
| 29 | list_EMG <- EMGLLF(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda = 0, |
| 30 | X, Y, eps, fast) |
| 31 | |
| 32 | grid <- array(0, dim = c(p, m, k)) |
| 33 | for (j in 1:p) |
| 34 | { |
| 35 | for (mm in 1:m) |
| 36 | grid[j, mm, ] <- abs(list_EMG$S[j, mm, ])/(n * list_EMG$pi^gamma) |
| 37 | } |
| 38 | sort(unique(grid)) |
| 39 | } |