--- /dev/null
+#Entrée : courbes synchrones, soit après étape 1 itérée, soit après chaqure étape 1
+
+#(Benjamin)
+#à partir de là, "conso" == courbes synchrones
+n <- nrow(conso)
+delta <- ncol(conso)
+
+
+#17000 colonnes coeff 1, puis 17000 coeff 2... [non : dans chaque tranche du cube]
+
+#TODO: une fonction qui fait lignes 59 à 91
+
+#cube:
+# Xcwt4 <- toCWT(conso, noctave = noctave4, dt = 1,
+# scalevector = scalevector4,
+# lt = delta, smooth = FALSE,
+# nvoice = nvoice) # observations node with CWT
+#
+# #matrix:
+# ############Xcwt2 <- matrix(0.0, nrow= n, ncol= 2 + delta * lscvect)
+# #Xcwt2 <- matrix(NA_complex_, nrow= n, ncol= 2 + length((c(Xcwt4[,,1]))))
+#
+# #NOTE: delta et lscvect pourraient etre gardés à part (communs)
+# for(i in 1:n)
+# Xcwt2[i,] <- c(delta, lscvect, Xcwt4[,,i] / max(Mod(Xcwt4[,,i])) )
+#
+# #rm(conso, Xcwt4); gc()
+#
+# ## _.b WER^2 distances ########
+# Xwer_dist <- matrix(0.0, n, n)
+# for(i in 1:(n - 1)){
+# mat1 <- vect2mat(Xcwt2[i,])
+# for(j in (i + 1):n){
+# mat2 <- vect2mat(Xcwt2[j,])
+# num <- Mod(mat1 * Conj(mat2))
+# WX <- Mod(mat1 * Conj(mat1))
+# WY <- Mod(mat2 * Conj(mat2))
+# smsmnum <- smCWT(num, scalevector = scalevector4)
+# smsmWX <- smCWT(WX, scalevector = scalevector4)
+# smsmWY <- smCWT(WY, scalevector = scalevector4)
+# wer2 <- sum(colSums(smsmnum)^2) /
+# sum( sum(colSums(smsmWX) * colSums(smsmWY)) )
+# Xwer_dist[i, j] <- sqrt(delta * lscvect * (1 - wer2))
+# Xwer_dist[j, i] <- Xwer_dist[i, j]
+# }
+# }
+# diag(Xwer_dist) <- numeric(n)
+#
+# save(Xwer_dist, file = "../res/2009_synchros200WER.Rdata")
+# save(Xwer_dist, file = "../res/2009_synchros200-randomWER.Rdata")
+
+
+
+#lignes 59 à 91 "dépliées" :
+Xcwt4 <- toCWT(conso, noctave = noctave4, dt = 1,
+ scalevector = scalevector4,
+ lt = delta, smooth = FALSE,
+ nvoice = nvoice) # observations node with CWT
+
+ #matrix:
+ ############Xcwt2 <- matrix(0.0, nrow= n, ncol= 2 + delta * lscvect)
+ Xcwt2 <- matrix(NA_complex_, nrow= n, ncol= 2 + length((c(Xcwt4[,,1]))))
+
+ #NOTE: delta et lscvect pourraient etre gardés à part (communs)
+ for(i in 1:n)
+ Xcwt2[i,] <- c(delta, lscvect, Xcwt4[,,i] / max(Mod(Xcwt4[,,i])) )
+
+ #rm(conso, Xcwt4); gc()
+
+ ## _.b WER^2 distances ########
+ Xwer_dist <- matrix(0.0, n, n)
+ for(i in 1:(n - 1)){
+ mat1 <- vect2mat(Xcwt2[i,])
+
+ #NOTE: vect2mat = as.matrix ?! (dans aux.R)
+ vect2mat <- function(vect){
+ vect <- as.vector(vect)
+ matrix(vect[-(1:2)], delta, lscvect)
+ }
+
+ for(j in (i + 1):n){
+ mat2 <- vect2mat(Xcwt2[j,])
+ num <- Mod(mat1 * Conj(mat2))
+ WX <- Mod(mat1 * Conj(mat1))
+ WY <- Mod(mat2 * Conj(mat2))
+ smsmnum <- smCWT(num, scalevector = scalevector4)
+ smsmWX <- smCWT(WX, scalevector = scalevector4)
+ smsmWY <- smCWT(WY, scalevector = scalevector4)
+ wer2 <- sum(colSums(smsmnum)^2) /
+ sum( sum(colSums(smsmWX) * colSums(smsmWY)) )
+ Xwer_dist[i, j] <- sqrt(delta * lscvect * (1 - wer2))
+ Xwer_dist[j, i] <- Xwer_dist[i, j]
+ }
+ }
+ diag(Xwer_dist) <- numeric(n)
+
+#fonction smCWT (dans aux.R)
+ smCWT <- function(CWT, sw= 0, tw= 0, swabs= 0,
+ nvoice= 12, noctave= 2, s0= 2, w0= 2*pi,
+ lt= 24, dt= 0.5, scalevector )
+ {
+# noctave <- adjust.noctave(lt, dt, s0, tw, noctave)
+# scalevector <- 2^(0:(noctave * nvoice) / nvoice) * s0
+ wsp <- Mod(CWT)
+ smwsp <- smooth.matrix(wsp, swabs)
+ smsmwsp <- smooth.time(smwsp, tw, dt, scalevector)
+ smsmwsp
+ }
+
+ #dans sowas.R
+smooth.matrix <- function(wt,swabs){
+
+ if (swabs != 0)
+ smwt <- t(filter(t(wt),rep(1,2*swabs+1)/(2*swabs+1)))
+ else
+ smwt <- wt
+
+ smwt
+
+}
+smooth.time <- function(wt,tw,dt,scalevector){
+
+ smwt <- wt
+
+ if (tw != 0){
+ for (i in 1:length(scalevector)){
+
+ twi <- as.integer(scalevector[i]*tw/dt)
+ smwt[,i] <- filter(wt[,i],rep(1,2*twi+1)/(2*twi+1))
+
+ }
+ }
+ smwt
+}
+
+#et filter() est dans stats::
+
+#cf. filters en C dans : https://svn.r-project.org/R/trunk/src/library/stats/src/filter.c
+