add some TODOs
authorBenjamin Auder <benjamin.auder@somewhere>
Wed, 8 Mar 2017 10:52:39 +0000 (11:52 +0100)
committerBenjamin Auder <benjamin.auder@somewhere>
Wed, 8 Mar 2017 10:52:39 +0000 (11:52 +0100)
epclust/R/clustering.R
epclust/R/main.R
epclust/src/WER.c [new file with mode: 0644]

index 9a55495..3993e76 100644 (file)
@@ -21,7 +21,7 @@
 #'
 #' @return For \code{clusteringTask1()} and \code{computeClusters1()}, the indices of the
 #'   computed (K1) medoids. Indices are irrelevant for stage 2 clustering, thus
-#'   \code{computeClusters2()} outputs a matrix of medoids
+#'   \code{computeClusters2()} outputs a big.matrix of medoids
 #'   (of size limited by nb_series_per_chunk)
 NULL
 
@@ -73,6 +73,7 @@ computeClusters2 = function(medoids, K2,
        synchrones = computeSynchrones(medoids,
                getRefSeries, nb_ref_curves, nb_series_per_chunk, ncores_clust, verbose, parll)
        distances = computeWerDists(synchrones, ncores_clust, verbose, parll)
+       #TODO: if PAM cannot take big.matrix in input, cast it before... (more than OK in RAM)
        medoids[ cluster::pam(distances, K2, diss=TRUE)$medoids , ]
 }
 
@@ -81,16 +82,27 @@ computeClusters2 = function(medoids, K2,
 #' Compute the synchrones curves (sum of clusters elements) from a matrix of medoids,
 #' using L2 distances.
 #'
-#' @param medoids Matrix of medoids (curves of same legnth as initial series)
+#' @param medoids big.matrix of medoids (curves of same length as initial series)
 #' @param getRefSeries Function to retrieve initial series (e.g. in stage 2 after series
 #'   have been replaced by stage-1 medoids)
 #' @param nb_ref_curves How many reference series? (This number is known at this stage)
 #' @inheritParams claws
 #'
+#' @return A big.matrix of size K1 x L where L = data_length
+#'
 #' @export
 computeSynchrones = function(medoids, getRefSeries,
        nb_ref_curves, nb_series_per_chunk, ncores_clust=1,verbose=FALSE,parll=TRUE)
 {
+
+
+
+#TODO: si parll, getMedoids + serialization, pass only getMedoids to nodes
+# --> BOF... chaque node chargera tous les medoids (efficacité) :/ ==> faut que ça tienne en RAM
+#au pire :: C-ifier et charger medoids 1 by 1...
+
+       #MIEUX :: medoids DOIT etre une big.matrix partagée !
+
        computeSynchronesChunk = function(indices)
        {
                if (verbose)
@@ -111,36 +123,43 @@ computeSynchrones = function(medoids, getRefSeries,
 
        K = nrow(medoids)
        # Use bigmemory (shared==TRUE by default) + synchronicity to fill synchrones in //
+       # TODO: if size > RAM (not our case), use file-backed big.matrix
        synchrones = bigmemory::big.matrix(nrow=K,ncol=ncol(medoids),type="double",init=0.)
        counts = bigmemory::big.matrix(nrow=K,ncol=1,type="double",init=0)
-       # Fork (// run) only on Linux & MacOS; on Windows: run sequentially
+       # synchronicity is only for Linux & MacOS; on Windows: run sequentially
        parll = (requireNamespace("synchronicity",quietly=TRUE)
                && parll && Sys.info()['sysname'] != "Windows")
        if (parll)
                m <- synchronicity::boost.mutex()
 
+       if (parll)
+       {
+               cl = parallel::makeCluster(ncores_clust)
+               parallel::clusterExport(cl,
+                       varlist=c("synchrones","counts","verbose","medoids","getRefSeries"),
+                       envir=environment())
+       }
+
        indices_workers = .spreadIndices(seq_len(nb_ref_curves), nb_series_per_chunk)
        ignored <-
                if (parll)
-               {
-                       parallel::mclapply(indices_workers, computeSynchronesChunk,
-                               mc.cores=ncores_clust, mc.allow.recursive=FALSE)
-               }
+                       parallel::parLapply(indices_workers, computeSynchronesChunk)
                else
                        lapply(indices_workers, computeSynchronesChunk)
 
-       mat_syncs = matrix(nrow=K, ncol=ncol(medoids))
-       vec_count = rep(NA, K)
-       #TODO: can we avoid this loop?
+       if (parll)
+               parallel::stopCluster(cl)
+
+       #TODO: can we avoid this loop? ( synchrones = sweep(synchrones, 1, counts, '/') )
        for (i in seq_len(K))
-       {
-               mat_syncs[i,] = synchrones[i,]
-               vec_count[i] = counts[i,1]
-       }
+               synchrones[i,] = synchrones[i,] / counts[i,1]
        #NOTE: odds for some clusters to be empty? (when series already come from stage 2)
        #      ...maybe; but let's hope resulting K1' be still quite bigger than K2
-       mat_syncs = sweep(mat_syncs, 1, vec_count, '/')
-       mat_syncs[ sapply(seq_len(K), function(i) all(!is.nan(mat_syncs[i,]))) , ]
+       noNA_rows = sapply(seq_len(K), function(i) all(!is.nan(synchrones[i,])))
+       if (all(noNA_rows))
+               return (synchrones)
+       # Else: some clusters are empty, need to slice synchrones
+       synchrones[noNA_rows,]
 }
 
 #' computeWerDists
@@ -148,13 +167,21 @@ computeSynchrones = function(medoids, getRefSeries,
 #' Compute the WER distances between the synchrones curves (in rows), which are
 #' returned (e.g.) by \code{computeSynchrones()}
 #'
-#' @param synchrones A matrix of synchrones, in rows. The series have same length as the
-#'   series in the initial dataset
+#' @param synchrones A big.matrix of synchrones, in rows. The series have same length
+#'   as the series in the initial dataset
 #' @inheritParams claws
 #'
+#' @return A big.matrix of size K1 x K1
+#'
 #' @export
 computeWerDists = function(synchrones, ncores_clust=1,verbose=FALSE,parll=TRUE)
 {
+
+
+
+#TODO: re-organize to call computeWerDist(x,y) [C] (in //?) from two indices + big.matrix
+
+
        n <- nrow(synchrones)
        delta <- ncol(synchrones)
        #TODO: automatic tune of all these parameters ? (for other users)
@@ -163,7 +190,7 @@ computeWerDists = function(synchrones, ncores_clust=1,verbose=FALSE,parll=TRUE)
        noctave = 13
        # 4 here represent 2^5 = 32 half-hours ~ 1 day
        #NOTE: default scalevector == 2^(0:(noctave * nvoice) / nvoice) * s0 (?)
-       scalevector  <- 2^(4:(noctave * nvoice) / nvoice) * 2
+       scalevector  <- 2^(4:(noctave * nvoice) / nvoice + 1)
        #condition: ( log2(s0*w0/(2*pi)) - 1 ) * nvoice + 1.5 >= 1
        s0=2
        w0=2*pi
@@ -176,7 +203,7 @@ computeWerDists = function(synchrones, ncores_clust=1,verbose=FALSE,parll=TRUE)
                if (verbose)
                        cat(paste("+++ Compute Rwave::cwt() on serie ",i,"\n", sep=""))
                ts <- scale(ts(synchrones[i,]), center=TRUE, scale=scaled)
-               totts.cwt = Rwave::cwt(ts,totnoct,nvoice,w0,plot=0)
+               totts.cwt = Rwave::cwt(ts, totnoct, nvoice, w0, plot=FALSE)
                ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)]
                #Normalization
                sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0)
@@ -192,7 +219,8 @@ computeWerDists = function(synchrones, ncores_clust=1,verbose=FALSE,parll=TRUE)
                        envir=environment())
        }
 
-       # (normalized) observations node with CWT
+       # list of CWT from synchrones
+       # TODO: fit in RAM, OK? If not, 2 options: serialize, compute individual distances
        Xcwt4 <-
                if (parll)
                        parallel::parLapply(cl, seq_len(n), computeCWT)
@@ -207,6 +235,9 @@ computeWerDists = function(synchrones, ncores_clust=1,verbose=FALSE,parll=TRUE)
        if (verbose)
                cat("*** Compute WER distances from CWT\n")
 
+       #TODO: computeDistances(i,j), et répartir les n(n-1)/2 couples d'indices
+       #là c'est trop déséquilibré
+
        computeDistancesLineI = function(i)
        {
                if (verbose)
@@ -217,7 +248,7 @@ computeWerDists = function(synchrones, ncores_clust=1,verbose=FALSE,parll=TRUE)
                        num <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE)
                        WX <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[i]])), fcoefs, circular=TRUE)
                        WY <- filter(Mod(Xcwt4[[j]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE)
-                       wer2    <- sum(colSums(num)^2) / sum( sum(colSums(WX) * colSums(WY)) )
+                       wer2 <- sum(colSums(num)^2) / sum( sum(colSums(WX) * colSums(WY)) )
                        if (parll)
                                synchronicity::lock(m)
                        Xwer_dist[i,j] <- sqrt(delta * ncol(Xcwt4[[1]]) * (1 - wer2))
@@ -242,12 +273,7 @@ computeWerDists = function(synchrones, ncores_clust=1,verbose=FALSE,parll=TRUE)
                else
                        lapply(seq_len(n-1), computeDistancesLineI)
        Xwer_dist[n,n] = 0.
-
-       mat_dists = matrix(nrow=n, ncol=n)
-       #TODO: avoid this loop?
-       for (i in 1:n)
-               mat_dists[i,] = Xwer_dist[i,]
-       mat_dists
+       Xwer_dist
 }
 
 # Helper function to divide indices into balanced sets
index bba0618..f1e435c 100644 (file)
@@ -169,6 +169,15 @@ claws = function(getSeries, K1, K2,
                        inds, getContribs, K1, nb_series_per_chunk, ncores_clust, verbose, parll)
                if (WER=="mix")
                {
+
+
+
+
+#TODO: getSeries(indices_medoids) BAD ; il faudrait une big.matrix de medoids en entree
+                       #OK en RAM il y en aura 1000 (donc 1000*K1*17519... OK)
+                       #...mais du coup chaque process ne re-dupliquera pas medoids
+
+
                        medoids2 = computeClusters2(getSeries(indices_medoids),
                                K2, getSeries, nb_curves, nb_series_per_chunk, ncores_clust, verbose, parll)
                        binarize(medoids2, synchrones_file, nb_series_per_chunk, sep, nbytes, endian)
diff --git a/epclust/src/WER.c b/epclust/src/WER.c
new file mode 100644 (file)
index 0000000..36bfba7
--- /dev/null
@@ -0,0 +1,117 @@
+#include <stdlib.h>
+#include <math.h>
+#include <stdbool.h>
+
+#ifndef M_PI
+#define M_PI 3.14159265358979323846
+#endif
+
+// n: number of synchrones, m: length of a synchrone
+float computeWerDist(float* s1, float* s2, int n, int m)
+{
+       //TODO: automatic tune of all these parameters ? (for other users)
+       int nvoice = 4;
+       //noctave 2^13 = 8192 half hours ~ 180 days ; ~log2(ncol(synchrones))
+       int noctave = 13
+       // 4 here represent 2^5 = 32 half-hours ~ 1 day
+       //NOTE: default scalevector == 2^(0:(noctave * nvoice) / nvoice) * s0 (?)
+       //R: scalevector <- 2^(4:(noctave * nvoice) / nvoice + 1)
+       int* scalevector = (int*)malloc( (noctave*nvoice-4 + 1) * sizeof(int))
+       for (int i=4; i<=noctave*nvoice; i++)
+               scalevector[i-4] = pow(2., (float)i/nvoice + 1.);
+       //condition: ( log2(s0*w0/(2*pi)) - 1 ) * nvoice + 1.5 >= 1
+       int s0 = 2;
+       double w0 = 2*M_PI;
+       bool scaled = false;
+       int s0log = as.integer( (log2( s0*w0/(2*pi) ) - 1) * nvoice + 1.5 )
+       int totnoct = noctave + as.integer(s0log/nvoice) + 1
+
+
+
+
+
+///TODO: continue
+
+
+
+       computeCWT = function(i)
+       {
+               if (verbose)
+                       cat(paste("+++ Compute Rwave::cwt() on serie ",i,"\n", sep=""))
+               ts <- scale(ts(synchrones[i,]), center=TRUE, scale=scaled)
+               totts.cwt = Rwave::cwt(ts,totnoct,nvoice,w0,plot=0)
+               ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)]
+               #Normalization
+               sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0)
+               sqres <- sweep(ts.cwt,2,sqs,'*')
+               sqres / max(Mod(sqres))
+       }
+
+       if (parll)
+       {
+               cl = parallel::makeCluster(ncores_clust)
+               parallel::clusterExport(cl,
+                       varlist=c("synchrones","totnoct","nvoice","w0","s0log","noctave","s0","verbose"),
+                       envir=environment())
+       }
+
+       # (normalized) observations node with CWT
+       Xcwt4 <-
+               if (parll)
+                       parallel::parLapply(cl, seq_len(n), computeCWT)
+               else
+                       lapply(seq_len(n), computeCWT)
+
+       if (parll)
+               parallel::stopCluster(cl)
+
+       Xwer_dist <- bigmemory::big.matrix(nrow=n, ncol=n, type="double")
+       fcoefs = rep(1/3, 3) #moving average on 3 values (TODO: very slow! correct?!)
+       if (verbose)
+               cat("*** Compute WER distances from CWT\n")
+
+       #TODO: computeDistances(i,j), et répartir les n(n-1)/2 couples d'indices
+       #là c'est trop déséquilibré
+
+       computeDistancesLineI = function(i)
+       {
+               if (verbose)
+                       cat(paste("   Line ",i,"\n", sep=""))
+               for (j in (i+1):n)
+               {
+                       #TODO: 'circular=TRUE' is wrong, should just take values on the sides; to rewrite in C
+                       num <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE)
+                       WX <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[i]])), fcoefs, circular=TRUE)
+                       WY <- filter(Mod(Xcwt4[[j]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE)
+                       wer2    <- sum(colSums(num)^2) / sum( sum(colSums(WX) * colSums(WY)) )
+                       if (parll)
+                               synchronicity::lock(m)
+                       Xwer_dist[i,j] <- sqrt(delta * ncol(Xcwt4[[1]]) * (1 - wer2))
+                       Xwer_dist[j,i] <- Xwer_dist[i,j]
+                       if (parll)
+                               synchronicity::unlock(m)
+               }
+               Xwer_dist[i,i] = 0.
+       }
+
+       parll = (requireNamespace("synchronicity",quietly=TRUE)
+               && parll && Sys.info()['sysname'] != "Windows")
+       if (parll)
+               m <- synchronicity::boost.mutex()
+
+       ignored <-
+               if (parll)
+               {
+                       parallel::mclapply(seq_len(n-1), computeDistancesLineI,
+                               mc.cores=ncores_clust, mc.allow.recursive=FALSE)
+               }
+               else
+                       lapply(seq_len(n-1), computeDistancesLineI)
+       Xwer_dist[n,n] = 0.
+
+       mat_dists = matrix(nrow=n, ncol=n)
+       #TODO: avoid this loop?
+       for (i in 1:n)
+               mat_dists[i,] = Xwer_dist[i,]
+       mat_dists
+