Adjustments for CRAN upload
[valse.git] / pkg / R / selectVariables.R
... / ...
CommitLineData
1#' selectVariables
2#'
3#' For a given lambda, construct the sets of relevant variables for each cluster.
4#'
5#' @param phiInit an initial estimator for phi (size: p*m*k)
6#' @param rhoInit an initial estimator for rho (size: m*m*k)
7#' @param piInit an initial estimator for pi (size : k)
8#' @param gamInit an initial estimator for gamma
9#' @param mini minimum number of iterations in EM algorithm
10#' @param maxi maximum number of iterations in EM algorithm
11#' @param gamma power in the penalty
12#' @param glambda grid of regularization parameters
13#' @param X matrix of regressors
14#' @param Y matrix of responses
15#' @param thresh real, threshold to say a variable is relevant, by default = 1e-8
16#' @param eps threshold to say that EM algorithm has converged
17#' @param ncores Number or cores for parallel execution (1 to disable)
18#' @param fast boolean to enable or not the C function call
19#'
20#' @return a list, varying lambda in a grid, with selected (the indices of variables that are selected),
21#' Rho (the covariance parameter, reparametrized), Pi (the proportion parameter)
22#'
23#' @export
24selectVariables <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma,
25 glambda, X, Y, thresh = 1e-08, eps, ncores = 3, fast)
26{
27 if (ncores > 1) {
28 cl <- parallel::makeCluster(ncores, outfile = "")
29 parallel::clusterExport(cl = cl, varlist = c("phiInit", "rhoInit", "gamInit",
30 "mini", "maxi", "glambda", "X", "Y", "thresh", "eps"), envir = environment())
31 }
32
33 # Computation for a fixed lambda
34 computeCoefs <- function(lambda)
35 {
36 params <- EMGLLF(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda,
37 X, Y, eps, fast)
38
39 p <- ncol(X)
40 m <- ncol(Y)
41
42 # selectedVariables: list where element j contains vector of selected variables
43 # in [1,m]
44 selectedVariables <- lapply(1:p, function(j) {
45 # from boolean matrix mxk of selected variables obtain the corresponding boolean
46 # m-vector, and finally return the corresponding indices
47 if (m>1) {
48 seq_len(m)[apply(abs(params$phi[j, , ]) > thresh, 1, any)]
49 } else {
50 if (any(params$phi[j, , ] > thresh))
51 1
52 else
53 numeric(0)
54 }
55 })
56
57 list(selected = selectedVariables, Rho = params$rho, Pi = params$pi)
58 }
59
60 # For each lambda in the grid, we compute the coefficients
61 out <-
62 if (ncores > 1) {
63 parLapply(cl, glambda, computeCoefs)
64 } else {
65 lapply(glambda, computeCoefs)
66 }
67 if (ncores > 1)
68 parallel::stopCluster(cl)
69
70 # Suppress models which are computed twice
71 # sha1_array <- lapply(out, digest::sha1) out[ duplicated(sha1_array) ]
72 selec <- lapply(out, function(model) model$selected)
73 ind_dup <- duplicated(selec)
74 ind_uniq <- which(!ind_dup)
75 out2 <- list()
76 for (l in 1:length(ind_uniq))
77 out2[[l]] <- out[[ind_uniq[l]]]
78 out2
79}