| 1 | #' selectVariables |
| 2 | #' |
| 3 | #' For a given lambda, construct the sets of relevant variables for each cluster. |
| 4 | #' |
| 5 | #' @param phiInit an initial estimator for phi (size: p*m*k) |
| 6 | #' @param rhoInit an initial estimator for rho (size: m*m*k) |
| 7 | #' @param piInit an initial estimator for pi (size : k) |
| 8 | #' @param gamInit an initial estimator for gamma |
| 9 | #' @param mini minimum number of iterations in EM algorithm |
| 10 | #' @param maxi maximum number of iterations in EM algorithm |
| 11 | #' @param gamma power in the penalty |
| 12 | #' @param glambda grid of regularization parameters |
| 13 | #' @param X matrix of regressors |
| 14 | #' @param Y matrix of responses |
| 15 | #' @param thresh real, threshold to say a variable is relevant, by default = 1e-8 |
| 16 | #' @param eps threshold to say that EM algorithm has converged |
| 17 | #' @param ncores Number or cores for parallel execution (1 to disable) |
| 18 | #' @param fast boolean to enable or not the C function call |
| 19 | #' |
| 20 | #' @return a list, varying lambda in a grid, with selected (the indices of variables that are selected), |
| 21 | #' Rho (the covariance parameter, reparametrized), Pi (the proportion parameter) |
| 22 | #' |
| 23 | #' @export |
| 24 | selectVariables <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, |
| 25 | glambda, X, Y, thresh = 1e-08, eps, ncores = 3, fast) |
| 26 | { |
| 27 | if (ncores > 1) { |
| 28 | cl <- parallel::makeCluster(ncores, outfile = "") |
| 29 | parallel::clusterExport(cl = cl, varlist = c("phiInit", "rhoInit", "gamInit", |
| 30 | "mini", "maxi", "glambda", "X", "Y", "thresh", "eps"), envir = environment()) |
| 31 | } |
| 32 | |
| 33 | # Computation for a fixed lambda |
| 34 | computeCoefs <- function(lambda) |
| 35 | { |
| 36 | params <- EMGLLF(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, |
| 37 | X, Y, eps, fast) |
| 38 | |
| 39 | p <- ncol(X) |
| 40 | m <- ncol(Y) |
| 41 | |
| 42 | # selectedVariables: list where element j contains vector of selected variables |
| 43 | # in [1,m] |
| 44 | selectedVariables <- lapply(1:p, function(j) { |
| 45 | # from boolean matrix mxk of selected variables obtain the corresponding boolean |
| 46 | # m-vector, and finally return the corresponding indices |
| 47 | if (m>1) { |
| 48 | seq_len(m)[apply(abs(params$phi[j, , ]) > thresh, 1, any)] |
| 49 | } else { |
| 50 | if (any(params$phi[j, , ] > thresh)) |
| 51 | 1 |
| 52 | else |
| 53 | numeric(0) |
| 54 | } |
| 55 | }) |
| 56 | |
| 57 | list(selected = selectedVariables, Rho = params$rho, Pi = params$pi) |
| 58 | } |
| 59 | |
| 60 | # For each lambda in the grid, we compute the coefficients |
| 61 | out <- |
| 62 | if (ncores > 1) { |
| 63 | parLapply(cl, glambda, computeCoefs) |
| 64 | } else { |
| 65 | lapply(glambda, computeCoefs) |
| 66 | } |
| 67 | if (ncores > 1) |
| 68 | parallel::stopCluster(cl) |
| 69 | |
| 70 | # Suppress models which are computed twice |
| 71 | # sha1_array <- lapply(out, digest::sha1) out[ duplicated(sha1_array) ] |
| 72 | selec <- lapply(out, function(model) model$selected) |
| 73 | ind_dup <- duplicated(selec) |
| 74 | ind_uniq <- which(!ind_dup) |
| 75 | out2 <- list() |
| 76 | for (l in 1:length(ind_uniq)) |
| 77 | out2[[l]] <- out[[ind_uniq[l]]] |
| 78 | out2 |
| 79 | } |