| 1 | #' optimParams |
| 2 | #' |
| 3 | #' Wrapper function for OptimParams class |
| 4 | #' |
| 5 | #' @name optimParams |
| 6 | #' |
| 7 | #' @param X Data matrix of covariables |
| 8 | #' @param Y Output as a binary vector |
| 9 | #' @param K Number of populations. |
| 10 | #' @param link The link type, 'logit' or 'probit'. |
| 11 | #' @param M the empirical cross-moments between X and Y (optional) |
| 12 | #' @param nc Number of cores (default: 0 to use all) |
| 13 | #' |
| 14 | #' @return An object 'op' of class OptimParams, initialized so that |
| 15 | #' \code{op$run(θ0)} outputs the list of optimized parameters |
| 16 | #' \itemize{ |
| 17 | #' \item p: proportions, size K |
| 18 | #' \item β: regression matrix, size dxK |
| 19 | #' \item b: intercepts, size K |
| 20 | #' } |
| 21 | #' θ0 is a list containing the initial parameters. Only β is required |
| 22 | #' (p would be set to (1/K,...,1/K) and b to (0,...0)). |
| 23 | #' |
| 24 | #' @seealso \code{multiRun} to estimate statistics based on β, and |
| 25 | #' \code{generateSampleIO} for I/O random generation. |
| 26 | #' |
| 27 | #' @examples |
| 28 | #' # Optimize parameters from estimated μ |
| 29 | #' io <- generateSampleIO(100, |
| 30 | #' 1/2, matrix(c(1,-2,3,1),ncol=2), c(0,0), "logit") |
| 31 | #' μ <- computeMu(io$X, io$Y, list(K=2)) |
| 32 | #' o <- optimParams(io$X, io$Y, 2, "logit") |
| 33 | #' \dontrun{ |
| 34 | #' θ0 <- list(p=1/2, β=μ, b=c(0,0)) |
| 35 | #' par0 <- o$run(θ0) |
| 36 | #' # Compare with another starting point |
| 37 | #' θ1 <- list(p=1/2, β=2*μ, b=c(0,0)) |
| 38 | #' par1 <- o$run(θ1) |
| 39 | #' # Look at the function values at par0 and par1: |
| 40 | #' o$f( o$linArgs(par0) ) |
| 41 | #' o$f( o$linArgs(par1) )} |
| 42 | #' |
| 43 | #' @export |
| 44 | optimParams <- function(X, Y, K, link=c("logit","probit"), M=NULL, nc=0) |
| 45 | { |
| 46 | # Check arguments |
| 47 | if (!is.matrix(X) || any(is.na(X))) |
| 48 | stop("X: numeric matrix, no NAs") |
| 49 | if (!is.numeric(Y) || any(is.na(Y)) || any(Y!=0 & Y!=1)) |
| 50 | stop("Y: binary vector with 0 and 1 only") |
| 51 | link <- match.arg(link) |
| 52 | if (!is.numeric(K) || K!=floor(K) || K < 2 || K > ncol(X)) |
| 53 | stop("K: integer >= 2, <= d") |
| 54 | |
| 55 | if (is.null(M)) |
| 56 | { |
| 57 | # Precompute empirical moments |
| 58 | Mtmp <- computeMoments(X, Y) |
| 59 | M1 <- as.double(Mtmp[[1]]) |
| 60 | M2 <- as.double(Mtmp[[2]]) |
| 61 | M3 <- as.double(Mtmp[[3]]) |
| 62 | M <- c(M1, M2, M3) |
| 63 | } |
| 64 | else |
| 65 | M <- c(M[[1]], M[[2]], M[[3]]) |
| 66 | |
| 67 | # Build and return optimization algorithm object |
| 68 | methods::new("OptimParams", "li"=link, "X"=X, |
| 69 | "Y"=as.integer(Y), "K"=as.integer(K), "Mhat"=as.double(M), "nc"=as.integer(nc)) |
| 70 | } |
| 71 | |
| 72 | # Encapsulated optimization for p (proportions), β and b (regression parameters) |
| 73 | # |
| 74 | # Optimize the parameters of a mixture of logistic regressions model, possibly using |
| 75 | # \code{mu <- computeMu(...)} as a partial starting point. |
| 76 | # |
| 77 | # @field li Link function, 'logit' or 'probit' |
| 78 | # @field X Data matrix of covariables |
| 79 | # @field Y Output as a binary vector |
| 80 | # @field Mhat Vector of empirical moments |
| 81 | # @field K Number of populations |
| 82 | # @field n Number of sample points |
| 83 | # @field d Number of dimensions |
| 84 | # @field nc Number of cores (OpenMP //) |
| 85 | # @field W Weights matrix (initialized at identity) |
| 86 | # |
| 87 | setRefClass( |
| 88 | Class = "OptimParams", |
| 89 | |
| 90 | fields = list( |
| 91 | # Inputs |
| 92 | li = "character", #link function |
| 93 | X = "matrix", |
| 94 | Y = "numeric", |
| 95 | Mhat = "numeric", #vector of empirical moments |
| 96 | # Dimensions |
| 97 | K = "integer", |
| 98 | n = "integer", |
| 99 | d = "integer", |
| 100 | nc = "integer", |
| 101 | # Weights matrix (generalized least square) |
| 102 | W = "matrix" |
| 103 | ), |
| 104 | |
| 105 | methods = list( |
| 106 | initialize = function(...) |
| 107 | { |
| 108 | "Check args and initialize K, d, W" |
| 109 | |
| 110 | callSuper(...) |
| 111 | if (!hasArg("X") || !hasArg("Y") || !hasArg("K") |
| 112 | || !hasArg("li") || !hasArg("Mhat") || !hasArg("nc")) |
| 113 | { |
| 114 | stop("Missing arguments") |
| 115 | } |
| 116 | |
| 117 | n <<- nrow(X) |
| 118 | d <<- ncol(X) |
| 119 | # W will be initialized when calling run() |
| 120 | }, |
| 121 | |
| 122 | expArgs = function(v) |
| 123 | { |
| 124 | "Expand individual arguments from vector v into a list" |
| 125 | |
| 126 | list( |
| 127 | # p: dimension K-1, need to be completed |
| 128 | "p" = c(v[1:(K-1)], 1-sum(v[1:(K-1)])), |
| 129 | "β" = t(matrix(v[K:(K+d*K-1)], ncol=d)), |
| 130 | "b" = v[(K+d*K):(K+(d+1)*K-1)]) |
| 131 | }, |
| 132 | |
| 133 | linArgs = function(L) |
| 134 | { |
| 135 | "Linearize vectors+matrices from list L into a vector" |
| 136 | |
| 137 | # β linearized row by row, to match derivatives order |
| 138 | c(L$p[1:(K-1)], as.double(t(L$β)), L$b) |
| 139 | }, |
| 140 | |
| 141 | # TODO: relocate computeW in utils.R |
| 142 | computeW = function(θ) |
| 143 | { |
| 144 | "Compute the weights matrix from a parameters list" |
| 145 | |
| 146 | require(MASS) |
| 147 | dd <- d + d^2 + d^3 |
| 148 | M <- Moments(θ) |
| 149 | Omega <- matrix( .C("Compute_Omega", |
| 150 | X=as.double(X), Y=as.integer(Y), M=as.double(M), |
| 151 | pnc=as.integer(nc), pn=as.integer(n), pd=as.integer(d), |
| 152 | W=as.double(W), PACKAGE="morpheus")$W, nrow=dd, ncol=dd ) |
| 153 | MASS::ginv(Omega) |
| 154 | }, |
| 155 | |
| 156 | Moments = function(θ) |
| 157 | { |
| 158 | "Compute the vector of theoretical moments (size d+d^2+d^3)" |
| 159 | |
| 160 | p <- θ$p |
| 161 | β <- θ$β |
| 162 | λ <- sqrt(colSums(β^2)) |
| 163 | b <- θ$b |
| 164 | |
| 165 | # Tensorial products β^2 = β2 and β^3 = β3 must be computed from current β1 |
| 166 | β2 <- apply(β, 2, function(col) col %o% col) |
| 167 | β3 <- apply(β, 2, function(col) col %o% col %o% col) |
| 168 | |
| 169 | c( |
| 170 | β %*% (p * .G(li,1,λ,b)), |
| 171 | β2 %*% (p * .G(li,2,λ,b)), |
| 172 | β3 %*% (p * .G(li,3,λ,b))) |
| 173 | }, |
| 174 | |
| 175 | f = function(θ) |
| 176 | { |
| 177 | "Function to minimize: t(hat_Mi - Mi(θ)) . W . (hat_Mi - Mi(θ))" |
| 178 | |
| 179 | L <- expArgs(θ) |
| 180 | A <- as.matrix(Mhat - Moments(L)) |
| 181 | t(A) %*% W %*% A |
| 182 | }, |
| 183 | |
| 184 | grad_f = function(θ) |
| 185 | { |
| 186 | "Gradient of f: vector of size (K-1) + d*K + K = (d+2)*K - 1" |
| 187 | |
| 188 | L <- expArgs(θ) |
| 189 | -2 * t(grad_M(L)) %*% W %*% as.matrix(Mhat - Moments(L)) |
| 190 | }, |
| 191 | |
| 192 | grad_M = function(θ) |
| 193 | { |
| 194 | "Gradient of the moments vector: matrix of size d+d^2+d^3 x K-1+K+d*K" |
| 195 | |
| 196 | p <- θ$p |
| 197 | β <- θ$β |
| 198 | λ <- sqrt(colSums(β^2)) |
| 199 | μ <- sweep(β, 2, λ, '/') |
| 200 | b <- θ$b |
| 201 | |
| 202 | res <- matrix(nrow=nrow(W), ncol=0) |
| 203 | |
| 204 | # Tensorial products β^2 = β2 and β^3 = β3 must be computed from current β1 |
| 205 | β2 <- apply(β, 2, function(col) col %o% col) |
| 206 | β3 <- apply(β, 2, function(col) col %o% col %o% col) |
| 207 | |
| 208 | # Some precomputations |
| 209 | G1 = .G(li,1,λ,b) |
| 210 | G2 = .G(li,2,λ,b) |
| 211 | G3 = .G(li,3,λ,b) |
| 212 | G4 = .G(li,4,λ,b) |
| 213 | G5 = .G(li,5,λ,b) |
| 214 | |
| 215 | # Gradient on p: K-1 columns, dim rows |
| 216 | km1 = 1:(K-1) |
| 217 | res <- cbind(res, rbind( |
| 218 | sweep(as.matrix(β [,km1]), 2, G1[km1], '*') - G1[K] * β [,K], |
| 219 | sweep(as.matrix(β2[,km1]), 2, G2[km1], '*') - G2[K] * β2[,K], |
| 220 | sweep(as.matrix(β3[,km1]), 2, G3[km1], '*') - G3[K] * β3[,K] )) |
| 221 | |
| 222 | for (i in 1:d) |
| 223 | { |
| 224 | # i determines the derivated matrix dβ[2,3] |
| 225 | |
| 226 | dβ_left <- sweep(β, 2, p * G3 * β[i,], '*') |
| 227 | dβ_right <- matrix(0, nrow=d, ncol=K) |
| 228 | block <- i |
| 229 | dβ_right[block,] <- dβ_right[block,] + 1 |
| 230 | dβ <- dβ_left + sweep(dβ_right, 2, p * G1, '*') |
| 231 | |
| 232 | dβ2_left <- sweep(β2, 2, p * G4 * β[i,], '*') |
| 233 | dβ2_right <- do.call( rbind, lapply(1:d, function(j) { |
| 234 | sweep(dβ_right, 2, β[j,], '*') |
| 235 | }) ) |
| 236 | block <- ((i-1)*d+1):(i*d) |
| 237 | dβ2_right[block,] <- dβ2_right[block,] + β |
| 238 | dβ2 <- dβ2_left + sweep(dβ2_right, 2, p * G2, '*') |
| 239 | |
| 240 | dβ3_left <- sweep(β3, 2, p * G5 * β[i,], '*') |
| 241 | dβ3_right <- do.call( rbind, lapply(1:d, function(j) { |
| 242 | sweep(dβ2_right, 2, β[j,], '*') |
| 243 | }) ) |
| 244 | block <- ((i-1)*d*d+1):(i*d*d) |
| 245 | dβ3_right[block,] <- dβ3_right[block,] + β2 |
| 246 | dβ3 <- dβ3_left + sweep(dβ3_right, 2, p * G3, '*') |
| 247 | |
| 248 | res <- cbind(res, rbind(dβ, dβ2, dβ3)) |
| 249 | } |
| 250 | |
| 251 | # Gradient on b |
| 252 | res <- cbind(res, rbind( |
| 253 | sweep(β, 2, p * G2, '*'), |
| 254 | sweep(β2, 2, p * G3, '*'), |
| 255 | sweep(β3, 2, p * G4, '*') )) |
| 256 | |
| 257 | res |
| 258 | }, |
| 259 | |
| 260 | # userW allows to bypass the W optimization by giving a W matrix |
| 261 | run = function(θ0, userW=NULL) |
| 262 | { |
| 263 | "Run optimization from θ0 with solver..." |
| 264 | |
| 265 | if (!is.list(θ0)) |
| 266 | stop("θ0: list") |
| 267 | if (is.null(θ0$β)) |
| 268 | stop("At least θ0$β must be provided") |
| 269 | if (!is.matrix(θ0$β) || any(is.na(θ0$β)) |
| 270 | || nrow(θ0$β) != d || ncol(θ0$β) != K) |
| 271 | { |
| 272 | stop("θ0$β: matrix, no NA, nrow = d, ncol = K") |
| 273 | } |
| 274 | if (is.null(θ0$p)) |
| 275 | θ0$p = rep(1/K, K-1) |
| 276 | else if (!is.numeric(θ0$p) || length(θ0$p) != K-1 |
| 277 | || any(is.na(θ0$p)) || sum(θ0$p) > 1) |
| 278 | { |
| 279 | stop("θ0$p: length K-1, no NA, positive integers, sum to <= 1") |
| 280 | } |
| 281 | # NOTE: [["b"]] instead of $b because $b would match $beta (in pkg-cran) |
| 282 | if (is.null(θ0[["b"]])) |
| 283 | θ0$b = rep(0, K) |
| 284 | else if (!is.numeric(θ0$b) || length(θ0$b) != K || any(is.na(θ0$b))) |
| 285 | stop("θ0$b: length K, no NA") |
| 286 | |
| 287 | # (Re)Set W to identity, to allow several run from the same object |
| 288 | W <<- if (is.null(userW)) diag(d+d^2+d^3) else userW |
| 289 | |
| 290 | # NOTE: loopMax = 3 seems to not improve the final results. |
| 291 | loopMax <- ifelse(is.null(userW), 2, 1) |
| 292 | x_init <- linArgs(θ0) |
| 293 | for (loop in 1:loopMax) |
| 294 | { |
| 295 | op_res <- constrOptim( x_init, .self$f, .self$grad_f, |
| 296 | ui=cbind( |
| 297 | rbind( rep(-1,K-1), diag(K-1) ), |
| 298 | matrix(0, nrow=K, ncol=(d+1)*K) ), |
| 299 | ci=c(-1,rep(0,K-1)) ) |
| 300 | if (loop < loopMax) #avoid computing an extra W |
| 301 | W <<- computeW(expArgs(op_res$par)) |
| 302 | #x_init <- op_res$par #degrades performances (TODO: why?) |
| 303 | } |
| 304 | |
| 305 | expArgs(op_res$par) |
| 306 | } |
| 307 | ) |
| 308 | ) |
| 309 | |
| 310 | # Compute vectorial E[g^{(order)}(<β,x> + b)] with x~N(0,Id) (integral in R^d) |
| 311 | # = E[g^{(order)}(z)] with z~N(b,diag(λ)) |
| 312 | # by numerically evaluating the integral. |
| 313 | # |
| 314 | # @param link Link, 'logit' or 'probit' |
| 315 | # @param order Order of derivative |
| 316 | # @param λ Norm of columns of β |
| 317 | # @param b Intercept |
| 318 | # |
| 319 | .G <- function(link, order, λ, b) |
| 320 | { |
| 321 | # NOTE: weird "integral divergent" error on inputs: |
| 322 | # link="probit"; order=2; λ=c(531.8099,586.8893,523.5816); b=c(-118.512674,-3.488020,2.109969) |
| 323 | # Switch to pracma package for that (but it seems slow...) |
| 324 | sapply( seq_along(λ), function(k) { |
| 325 | res <- NULL |
| 326 | tryCatch({ |
| 327 | # Fast code, may fail: |
| 328 | res <- stats::integrate( |
| 329 | function(z) .deriv[[link]][[order]](λ[k]*z+b[k]) * exp(-z^2/2) / sqrt(2*pi), |
| 330 | lower=-Inf, upper=Inf )$value |
| 331 | }, error = function(e) { |
| 332 | # Robust slow code, no fails observed: |
| 333 | sink("/dev/null") #pracma package has some useless printed outputs... |
| 334 | res <- pracma::integral( |
| 335 | function(z) .deriv[[link]][[order]](λ[k]*z+b[k]) * exp(-z^2/2) / sqrt(2*pi), |
| 336 | xmin=-Inf, xmax=Inf, method="Kronrod") |
| 337 | sink() |
| 338 | }) |
| 339 | res |
| 340 | }) |
| 341 | } |
| 342 | |
| 343 | # Derivatives list: g^(k)(x) for links 'logit' and 'probit' |
| 344 | # |
| 345 | .deriv <- list( |
| 346 | "probit"=list( |
| 347 | # 'probit' derivatives list; |
| 348 | # NOTE: exact values for the integral E[g^(k)(λz+b)] could be computed |
| 349 | function(x) exp(-x^2/2)/(sqrt(2*pi)), #g' |
| 350 | function(x) exp(-x^2/2)/(sqrt(2*pi)) * -x, #g'' |
| 351 | function(x) exp(-x^2/2)/(sqrt(2*pi)) * ( x^2 - 1), #g^(3) |
| 352 | function(x) exp(-x^2/2)/(sqrt(2*pi)) * (-x^3 + 3*x), #g^(4) |
| 353 | function(x) exp(-x^2/2)/(sqrt(2*pi)) * ( x^4 - 6*x^2 + 3) #g^(5) |
| 354 | ), |
| 355 | "logit"=list( |
| 356 | # Sigmoid derivatives list, obtained with http://www.derivative-calculator.net/ |
| 357 | # @seealso http://www.ece.uc.edu/~aminai/papers/minai_sigmoids_NN93.pdf |
| 358 | function(x) {e=exp(x); .zin(e /(e+1)^2)}, #g' |
| 359 | function(x) {e=exp(x); .zin(e*(-e + 1) /(e+1)^3)}, #g'' |
| 360 | function(x) {e=exp(x); .zin(e*( e^2 - 4*e + 1) /(e+1)^4)}, #g^(3) |
| 361 | function(x) {e=exp(x); .zin(e*(-e^3 + 11*e^2 - 11*e + 1) /(e+1)^5)}, #g^(4) |
| 362 | function(x) {e=exp(x); .zin(e*( e^4 - 26*e^3 + 66*e^2 - 26*e + 1)/(e+1)^6)} #g^(5) |
| 363 | ) |
| 364 | ) |
| 365 | |
| 366 | # Utility for integration: "[return] zero if [argument is] NaN" (Inf / Inf divs) |
| 367 | # |
| 368 | # @param x Ratio of polynoms of exponentials, as in .S[[i]] |
| 369 | # |
| 370 | .zin <- function(x) |
| 371 | { |
| 372 | x[is.nan(x)] <- 0. |
| 373 | x |
| 374 | } |