#' Construct the data-driven grid for the regularization parameters used for the Lasso estimator
#' @param phiInit value for phi
-#' @param rhoInt value for rho
+#' @param rhoInit value for rho
#' @param piInit value for pi
#' @param gamInit value for gamma
+#' @param X matrix of covariates (of size n*p)
+#' @param Y matrix of responses (of size n*m)
+#' @param gamma power of weights in the penalty
#' @param mini minimum number of iterations in EM algorithm
#' @param maxi maximum number of iterations in EM algorithm
#' @param tau threshold to stop EM algorithm
#' @param k number of components
#' @param X matrix of covariates (of size n*p)
#' @param Y matrix of responses (of size n*m)
-#' @param tau threshold to stop EM algorithm
#'
#' @return a list with phiInit, rhoInit, piInit, gamInit
#' @export
-initSmallEM = function(k,X,Y,tau)
+#' @importFrom methods new
+#' @importFrom stats cutree dist hclust runif
+initSmallEM = function(k,X,Y)
{
n = nrow(Y)
m = ncol(Y)
{
Z = Zinit1[,repet]
Z_indice = seq_len(n)[Z == r] #renvoit les indices où Z==r
-
+ if (length(Z_indice) == 1) {
+ betaInit1[,,r,repet] = ginv(crossprod(t(X[Z_indice,]))) %*%
+ crossprod(t(X[Z_indice,]), Y[Z_indice,])
+ } else {
betaInit1[,,r,repet] = ginv(crossprod(X[Z_indice,])) %*%
crossprod(X[Z_indice,], Y[Z_indice,])
+ }
sigmaInit1[,,r,repet] = diag(m)
phiInit1[,,r,repet] = betaInit1[,,r,repet] #/ sigmaInit1[,,r,repet]
rhoInit1[,,r,repet] = solve(sigmaInit1[,,r,repet])
maxiInit = 11
new_EMG = .Call("EMGLLF_core",phiInit1[,,,repet],rhoInit1[,,,repet],piInit1[repet,],
- gamInit1[,,repet],miniInit,maxiInit,1,0,X,Y,tau)
+ gamInit1[,,repet],miniInit,maxiInit,1,0,X,Y,1e-4)
LLFEessai = new_EMG$LLF
LLFinit1[repet] = LLFEessai[length(LLFEessai)]
}