Commit | Line | Data |
---|---|---|
b7cd987d BA |
1 | #' computeWerDists |
2 | #' | |
3 | #' Compute the WER distances between the series at specified indices, which are | |
4 | #' obtaind by \code{getSeries(indices)} | |
5 | #' | |
6 | #' @param indices Indices of the series to consider | |
7 | #' @param getSeries Function to retrieve series (argument: 'inds', integer vector), | |
8 | #' as columns of a matrix | |
9 | #' @param ncores Number of cores for parallel runs | |
10 | #' @inheritParams claws | |
11 | #' | |
12 | #' @return A distances matrix of size K x K where K == length(indices) | |
13 | #' | |
14 | #' @export | |
15 | computeWerDists <- function(indices, getSeries, nb_series_per_chunk, smooth_lvl=3, | |
16 | nvoice=4, nbytes=4, endian=.Platform$endian, ncores=3, verbose=FALSE) | |
17 | { | |
18 | n <- length(indices) | |
19 | L <- length(getSeries(1)) #TODO: not very neat way to get L | |
20 | noctave <- ceiling(log2(L)) #min power of 2 to cover serie range | |
21 | # Since a CWT contains noctave*nvoice complex series, we deduce the number of CWT to | |
22 | # retrieve/put in one chunk. | |
23 | nb_cwt_per_chunk <- max(1, floor(nb_series_per_chunk / (nvoice*noctave*2))) | |
24 | ||
25 | # Initialize result as a square big.matrix of size 'number of medoids' | |
26 | Xwer_dist <- bigmemory::big.matrix(nrow=n, ncol=n, type="double") | |
27 | ||
28 | shift <- 1 #roughly equivalent to s0 in biwavelets & cie. TODO: as arg? | |
29 | ||
30 | cwt_file <- tempfile(pattern="epclust_cwt.bin_") | |
31 | # Compute the getSeries(indices) CWT, and store the results in the binary file | |
32 | computeSaveCWT <- function(inds) | |
33 | { | |
34 | if (verbose) | |
35 | cat(" Compute save CWT on ",length(inds)," indices\n", sep="") | |
36 | ||
37 | # Obtain CWT as big vectors of real part + imaginary part (concatenate) | |
38 | ts_cwt <- sapply(inds, function(i) { | |
39 | ts <- scale(ts(getSeries(i)), center=TRUE, scale=FALSE) | |
40 | ts_cwt <- Rwave::cwt(ts, noctave+ceiling(shift/nvoice), nvoice, | |
41 | w0=2*pi, twoD=TRUE, plot=FALSE) | |
42 | ts_cwt <- ts_cwt[,(1+shift):(noctave*nvoice+shift)] | |
43 | c( as.double(Re(ts_cwt)),as.double(Im(ts_cwt)) ) | |
44 | }) | |
45 | ||
46 | # Serialization | |
47 | binarize(ts_cwt, cwt_file, nb_cwt_per_chunk, ",", nbytes, endian) | |
48 | } | |
49 | ||
50 | # Function to retrieve a synchrone CWT from (binary) file | |
51 | getCWT <- function(index, L) | |
52 | { | |
53 | flat_cwt <- getDataInFile(index, cwt_file, nbytes, endian) | |
54 | cwt_length <- length(flat_cwt) / 2 | |
55 | re_part <- as.matrix(flat_cwt[1:cwt_length], nrow=L) | |
56 | im_part <- as.matrix(flat_cwt[(cwt_length+1):(2*cwt_length)], nrow=L) | |
57 | re_part + 1i * im_part | |
58 | } | |
59 | ||
60 | # Compute distances between columns i and j for j>i | |
61 | computeDistances <- function(i) | |
62 | { | |
63 | if (parll) | |
64 | { | |
65 | # parallel workers start with an empty environment | |
66 | require("epclust", quietly=TRUE) | |
67 | Xwer_dist <- bigmemory::attach.big.matrix(Xwer_dist_desc) | |
68 | } | |
69 | ||
70 | if (verbose) | |
71 | cat(paste(" Distances from ",i," to ",i+1,"...",n,"\n", sep="")) | |
72 | ||
73 | # Get CWT of column i, and run computations for columns j>i | |
74 | cwt_i <- getCWT(i, L) | |
75 | WX <- filterMA(Mod(cwt_i * Conj(cwt_i)), smooth_lvl) | |
76 | ||
77 | for (j in (i+1):n) | |
78 | { | |
79 | cwt_j <- getCWT(j, L) | |
80 | ||
81 | # Compute the ratio of integrals formula 5.6 for WER^2 | |
82 | # in https://arxiv.org/abs/1101.4744v2 paragraph 5.3 | |
83 | num <- filterMA(Mod(cwt_i * Conj(cwt_j)), smooth_lvl) | |
84 | WY <- filterMA(Mod(cwt_j * Conj(cwt_j)), smooth_lvl) | |
85 | wer2 <- sum(colSums(num)^2) / sum(colSums(WX) * colSums(WY)) | |
86 | ||
87 | Xwer_dist[i,j] <- sqrt(L * ncol(cwt_i) * (1 - wer2)) | |
88 | Xwer_dist[j,i] <- Xwer_dist[i,j] | |
89 | } | |
90 | Xwer_dist[i,i] <- 0. | |
91 | } | |
92 | ||
93 | if (verbose) | |
94 | cat(paste("--- Precompute and serialize synchrones CWT\n", sep="")) | |
95 | ||
96 | # Split indices by packets of length at most nb_cwt_per_chunk | |
97 | indices_cwt <- .splitIndices(indices, nb_cwt_per_chunk) | |
98 | # NOTE: next loop could potentially be run in //. Indices would be permuted (by | |
99 | # serialization order), and synchronicity would be required because of concurrent | |
100 | # writes. Probably not worth the effort - but possible. | |
101 | for (inds in indices_cwt) | |
102 | computeSaveCWT(inds) | |
103 | ||
104 | parll <- (ncores > 1) | |
105 | if (parll) | |
106 | { | |
107 | # outfile=="" to see stderr/stdout on terminal | |
108 | cl <- | |
109 | if (verbose) | |
110 | parallel::makeCluster(ncores, outfile="") | |
111 | else | |
112 | parallel::makeCluster(ncores) | |
113 | Xwer_dist_desc <- bigmemory::describe(Xwer_dist) | |
114 | parallel::clusterExport(cl, envir=environment(), | |
115 | varlist=c("parll","n","L","Xwer_dist_desc","getCWT","verbose")) | |
116 | } | |
117 | ||
118 | if (verbose) | |
119 | cat(paste("--- Compute WER distances\n", sep="")) | |
120 | ||
121 | ignored <- | |
122 | if (parll) | |
123 | parallel::clusterApplyLB(cl, seq_len(n-1), computeDistances) | |
124 | else | |
125 | lapply(seq_len(n-1), computeDistances) | |
126 | Xwer_dist[n,n] <- 0. | |
127 | ||
128 | if (parll) | |
129 | parallel::stopCluster(cl) | |
130 | ||
131 | unlink(cwt_file) #remove binary file | |
132 | ||
133 | Xwer_dist[,] #~small matrix K1 x K1 | |
134 | } |