| 1 | #include "tests/helpers.h" |
| 2 | #include "sources/kmeansClustering.h" |
| 3 | #include <math.h> |
| 4 | |
| 5 | //easy data: already clustered, one cluster = 1 vertex in equilateral triangle |
| 6 | void test_kmeansClustering1() |
| 7 | { |
| 8 | int n=99; |
| 9 | double* distances = (double*)malloc(n*n*sizeof(double)); |
| 10 | for (int i=0; i<n*n; i++) |
| 11 | distances[i] = 1.0; |
| 12 | int clustCount = 3, clustSize = n/clustCount; //33 |
| 13 | |
| 14 | for (int kounter=0; kounter<clustCount; kounter++) |
| 15 | { |
| 16 | //cluster k: kounter*33...(kounter+1)*33-1 |
| 17 | for (int i=kounter*clustSize; i<(kounter+1)*clustSize; i++) |
| 18 | { |
| 19 | for (int j=kounter*clustSize; j<(kounter+1)*clustSize; j++) |
| 20 | distances[i+n*j] = 0.0; //high-density cluster... |
| 21 | } |
| 22 | } |
| 23 | |
| 24 | //call to clustering algorithm |
| 25 | int* clusters = kmeansWithDistances_core(distances, n, clustCount, 10, 100); |
| 26 | |
| 27 | ASSERT_TRUE(countDistinctValues(clusters, n) == clustCount); |
| 28 | ASSERT_TRUE(checkClustersProportions(clusters, n, clustCount, 1e-10)); |
| 29 | free(distances); |
| 30 | free(clusters); |
| 31 | } |
| 32 | |
| 33 | //three isotropic (well separated) gaussian clusters |
| 34 | void test_kmeansClustering2() |
| 35 | { |
| 36 | // generate 2D data |
| 37 | int n=99, d=2; |
| 38 | double* M = (double*)malloc(n*d*sizeof(double)); |
| 39 | int clustCount = 3, clustSize = n/clustCount; //33 |
| 40 | |
| 41 | double ctrs[3][2] = |
| 42 | { |
| 43 | {-3.0,-3.0}, |
| 44 | {0.0,0.0}, |
| 45 | {3.0,3.0} |
| 46 | }; |
| 47 | |
| 48 | srand(time(NULL)); |
| 49 | for (int kounter=0; kounter<clustCount; kounter++) |
| 50 | { |
| 51 | //cluster k: kounter*33...(kounter+1)*33-1 |
| 52 | for (int i=kounter*clustSize; i<(kounter+1)*clustSize; i++) |
| 53 | { |
| 54 | double U = (double)rand()/RAND_MAX; |
| 55 | double V = (double)rand()/RAND_MAX; |
| 56 | double fact = sqrt(-2*log(U)); |
| 57 | M[i+n*0] = ctrs[kounter][0] + fact * cos(2*M_PI*V); |
| 58 | M[i+n*1] = ctrs[kounter][1] + fact * sin(2*M_PI*V); |
| 59 | } |
| 60 | } |
| 61 | |
| 62 | // compute distances matrix |
| 63 | double* distances = (double*)calloc(n*n,sizeof(double)); |
| 64 | for (int i=0; i<n; i++) |
| 65 | { |
| 66 | for (int ii=0; ii<n; ii++) |
| 67 | { |
| 68 | double distance = 0.0; |
| 69 | for (int j=0; j<d; j++) |
| 70 | distance += (M[i+n*j] - M[ii+n*j])*(M[i+n*j] - M[ii+n*j]); |
| 71 | distances[i+n*ii] = sqrt(distance); |
| 72 | } |
| 73 | } |
| 74 | free(M); //no need for initial data anymore |
| 75 | |
| 76 | //call to clustering algorithm |
| 77 | int* clusters = kmeansWithDistances_core(distances, n, clustCount, 10, 100); |
| 78 | |
| 79 | ASSERT_TRUE(countDistinctValues(clusters, n) == clustCount); |
| 80 | //test that each cluster accounts for 1/3 of total data, +/- 10% |
| 81 | ASSERT_TRUE(checkClustersProportions(clusters, n, clustCount, 0.1)); |
| 82 | free(distances); |
| 83 | free(clusters); |
| 84 | } |