Commit | Line | Data |
---|---|---|
a961f8a1 BA |
1 | \documentclass[12pt]{article} |
2 | ||
3 | \usepackage{geometry} | |
4 | \geometry{ | |
5 | a4paper, | |
6 | total={210mm,297mm}, | |
7 | left=10mm, | |
8 | right=10mm, | |
9 | top=15mm, | |
10 | bottom=15mm, | |
11 | } | |
12 | \setlength{\parindent}{0pt} | |
13 | \usepackage[utf8]{inputenc} | |
14 | \usepackage[french]{babel} | |
15 | \usepackage{helvet} | |
16 | \renewcommand{\familydefault}{\sfdefault} | |
17 | \usepackage{amsmath,amsfonts,amssymb} | |
18 | \usepackage{float} | |
19 | \usepackage{graphicx} | |
20 | \usepackage{wrapfig} | |
21 | \usepackage{xcolor} | |
22 | \usepackage{cprotect} | |
23 | %\setcounter{section}{9} | |
24 | ||
25 | \begin{document} | |
26 | ||
27 | <<setup, include=FALSE, cache=FALSE, echo=FALSE>>= | |
28 | opts_chunk$set(fig.path="figs/", fig.align="center", fig.show="hold", echo=FALSE) | |
29 | options(replace.assign=TRUE,width=90) | |
30 | @ | |
31 | ||
32 | <<initialize>>= | |
33 | library(aggexp) | |
34 | station = "STATIONNAME" | |
35 | experts = aggexp:::expertsArray[EXPERTSINDICES] | |
36 | K = length(experts) | |
37 | @ | |
38 | ||
39 | \cprotect\section{\verb|STATIONNAME| - Résumé des données} | |
40 | ||
41 | \vspace*{-0.5cm} | |
42 | <<plotCurves, out.width="12cm", out.height="9cm">>= | |
43 | mock_r = list(data = getData(experts, station), experts=experts, stations=station) | |
44 | plotCurves(mock_r) | |
45 | @ | |
46 | ||
47 | \vspace*{-0.8cm} | |
48 | \cprotect\section{\verb|STATIONNAME| - Performances en prédiction} | |
49 | ||
50 | \vspace*{-0.5cm} | |
51 | <<computePredictions>>= | |
52 | r_ml = runAlgorithm("ml", experts=experts, stations=station, alpha=0.2, H=183, grad=TRUE) | |
53 | r_rr = runAlgorithm("rr", experts=experts, stations=station, H=183) | |
54 | r_be = r_ml | |
55 | be = which.max(getBestExpert(r_ml)) | |
56 | r_be$data[,"Prediction"] = r_be$data[,experts[be]] | |
57 | @ | |
58 | ||
59 | <<plotPredictionClouds, out.width="6cm", out.height="6cm">>= | |
60 | plotCloud(r_be, 30, c(30,50,80), main=paste("Nuage Meilleur Expert (",experts[be],")",sep="")) | |
61 | plotCloud(r_ml, 30, c(30,50,80), main="Nuage ML") | |
62 | plotCloud(r_rr, 30, c(30,50,80), main="Nuage RR") | |
63 | @ | |
64 | ||
65 | \vspace*{-0.8cm} | |
66 | \cprotect\section{\verb|STATIONNAME| - Indicateurs d'alertes} | |
67 | ||
68 | \vspace*{-0.5cm} | |
69 | <<computeAlertIndicators>>= | |
70 | indicators = matrix(nrow=5, ncol=4+K) | |
71 | indicators[,1] = as.numeric(getIndicators(r_ml, thresh=30)) | |
72 | indicators[,2] = as.numeric(getIndicators(r_rr, thresh=30)) | |
73 | for (i in 1:K) { | |
74 | r_be$data[,"Prediction"] = r_be$data[,experts[i]] | |
75 | indicators[,i+2] = as.numeric(getIndicators(r_be, thresh=30)) | |
76 | } | |
77 | indicators = as.data.frame(indicators, row.names=c("TS","FA","MA","RMSE","EV")) | |
78 | names(indicators) = c("ML","RR", experts) | |
79 | @ | |
80 | ||
81 | <<plotAlertIndicators, results="asis">>= | |
82 | library(xtable) | |
83 | splitIndex = ifelse(length(experts) < 10, 7, 8) | |
84 | xtable(indicators[,1:splitIndex], caption="Indicateurs d'alertes ; partie 1") | |
85 | xtable(indicators[,(splitIndex+1):(2+K)], caption="Indicateurs d'alertes ; partie 2") | |
86 | @ | |
87 | ||
88 | \end{document} |