Commit | Line | Data |
---|---|---|
3453829e BA |
1 | #include "utils.h" |
2 | #include <stdlib.h> | |
3 | #include <math.h> | |
4 | #include <gsl/gsl_linalg.h> | |
5 | ||
6 | // TODO: don't recompute indexes ai(...) and mi(...) when possible | |
7 | void EMGLLF_core( | |
8 | // IN parameters | |
1196a43d BA |
9 | const Real* phiInit, // parametre initial de moyenne renormalise |
10 | const Real* rhoInit, // parametre initial de variance renormalise | |
3453829e | 11 | const Real* piInit, // parametre initial des proportions |
1196a43d BA |
12 | const Real* gamInit, // parametre initial des probabilites a posteriori de chaque echantillon |
13 | int mini, // nombre minimal d'iterations dans l'algorithme EM | |
14 | int maxi, // nombre maximal d'iterations dans l'algorithme EM | |
15 | Real gamma, // puissance des proportions dans la penalisation pour un Lasso adaptatif | |
16 | Real lambda, // valeur du parametre de regularisation du Lasso | |
17 | const Real* X, // regresseurs | |
18 | const Real* Y, // reponse | |
3453829e BA |
19 | Real eps, // seuil pour accepter la convergence |
20 | // OUT parameters (all pointers, to be modified) | |
1196a43d BA |
21 | Real* phi, // parametre de moyenne renormalise, calcule par l'EM |
22 | Real* rho, // parametre de variance renormalise, calcule par l'EM | |
23 | Real* pi, // parametre des proportions renormalise, calcule par l'EM | |
24 | Real* llh, // (derniere) log vraisemblance associee a cet echantillon, | |
25 | // pour les valeurs estimees des parametres | |
3453829e BA |
26 | Real* S, |
27 | int* affec, | |
28 | // additional size parameters | |
29 | int n, // nombre d'echantillons | |
30 | int p, // nombre de covariables | |
1196a43d BA |
31 | int m, // taille de Y (multivarie) |
32 | int k) // nombre de composantes dans le melange | |
3453829e BA |
33 | { |
34 | //Initialize outputs | |
35 | copyArray(phiInit, phi, p*m*k); | |
36 | copyArray(rhoInit, rho, m*m*k); | |
37 | copyArray(piInit, pi, k); | |
38 | //S is already allocated, and doesn't need to be 'zeroed' | |
39 | ||
40 | //Other local variables: same as in R | |
41 | Real* gam = (Real*)malloc(n*k*sizeof(Real)); | |
42 | Real* logGam = (Real*)malloc(k*sizeof(Real)); | |
43 | copyArray(gamInit, gam, n*k); | |
44 | Real* Gram2 = (Real*)malloc(p*p*k*sizeof(Real)); | |
45 | Real* ps2 = (Real*)malloc(p*m*k*sizeof(Real)); | |
46 | Real* b = (Real*)malloc(k*sizeof(Real)); | |
47 | Real* X2 = (Real*)malloc(n*p*k*sizeof(Real)); | |
48 | Real* Y2 = (Real*)malloc(n*m*k*sizeof(Real)); | |
49 | *llh = -INFINITY; | |
50 | Real* pi2 = (Real*)malloc(k*sizeof(Real)); | |
51 | // Additional (not at this place, in R file) | |
52 | Real* gam2 = (Real*)malloc(k*sizeof(Real)); | |
53 | Real* sqNorm2 = (Real*)malloc(k*sizeof(Real)); | |
54 | Real* detRho = (Real*)malloc(k*sizeof(Real)); | |
55 | gsl_matrix* matrix = gsl_matrix_alloc(m, m); | |
56 | gsl_permutation* permutation = gsl_permutation_alloc(m); | |
57 | Real* YiRhoR = (Real*)malloc(m*sizeof(Real)); | |
58 | Real* XiPhiR = (Real*)malloc(m*sizeof(Real)); | |
59 | const Real gaussConstM = pow(2.*M_PI,m/2.); | |
60 | Real* Phi = (Real*)malloc(p*m*k*sizeof(Real)); | |
61 | Real* Rho = (Real*)malloc(m*m*k*sizeof(Real)); | |
62 | Real* Pi = (Real*)malloc(k*sizeof(Real)); | |
63 | ||
64 | for (int ite=1; ite<=maxi; ite++) | |
65 | { | |
66 | copyArray(phi, Phi, p*m*k); | |
67 | copyArray(rho, Rho, m*m*k); | |
68 | copyArray(pi, Pi, k); | |
69 | ||
1196a43d | 70 | // Calculs associes a Y et X |
3453829e BA |
71 | for (int r=0; r<k; r++) |
72 | { | |
73 | for (int mm=0; mm<m; mm++) | |
74 | { | |
75 | //Y2[,mm,r] = sqrt(gam[,r]) * Y[,mm] | |
76 | for (int u=0; u<n; u++) | |
77 | Y2[ai(u,mm,r,n,m,k)] = sqrt(gam[mi(u,r,n,k)]) * Y[mi(u,mm,n,m)]; | |
78 | } | |
79 | for (int i=0; i<n; i++) | |
80 | { | |
81 | //X2[i,,r] = sqrt(gam[i,r]) * X[i,] | |
82 | for (int u=0; u<p; u++) | |
83 | X2[ai(i,u,r,n,p,k)] = sqrt(gam[mi(i,r,n,k)]) * X[mi(i,u,n,p)]; | |
84 | } | |
85 | for (int mm=0; mm<m; mm++) | |
86 | { | |
87 | //ps2[,mm,r] = crossprod(X2[,,r],Y2[,mm,r]) | |
88 | for (int u=0; u<p; u++) | |
89 | { | |
90 | Real dotProduct = 0.; | |
91 | for (int v=0; v<n; v++) | |
92 | dotProduct += X2[ai(v,u,r,n,p,k)] * Y2[ai(v,mm,r,n,m,k)]; | |
93 | ps2[ai(u,mm,r,p,m,k)] = dotProduct; | |
94 | } | |
95 | } | |
96 | for (int j=0; j<p; j++) | |
97 | { | |
98 | for (int s=0; s<p; s++) | |
99 | { | |
100 | //Gram2[j,s,r] = crossprod(X2[,j,r], X2[,s,r]) | |
101 | Real dotProduct = 0.; | |
102 | for (int u=0; u<n; u++) | |
103 | dotProduct += X2[ai(u,j,r,n,p,k)] * X2[ai(u,s,r,n,p,k)]; | |
104 | Gram2[ai(j,s,r,p,p,k)] = dotProduct; | |
105 | } | |
106 | } | |
107 | } | |
108 | ||
109 | ///////////// | |
110 | // Etape M // | |
111 | ///////////// | |
112 | ||
113 | // Pour pi | |
114 | for (int r=0; r<k; r++) | |
115 | { | |
116 | //b[r] = sum(abs(phi[,,r])) | |
117 | Real sumAbsPhi = 0.; | |
118 | for (int u=0; u<p; u++) | |
119 | for (int v=0; v<m; v++) | |
120 | sumAbsPhi += fabs(phi[ai(u,v,r,p,m,k)]); | |
121 | b[r] = sumAbsPhi; | |
122 | } | |
123 | //gam2 = colSums(gam) | |
124 | for (int u=0; u<k; u++) | |
125 | { | |
126 | Real sumOnColumn = 0.; | |
127 | for (int v=0; v<n; v++) | |
128 | sumOnColumn += gam[mi(v,u,n,k)]; | |
129 | gam2[u] = sumOnColumn; | |
130 | } | |
131 | //a = sum(gam %*% log(pi)) | |
132 | Real a = 0.; | |
133 | for (int u=0; u<n; u++) | |
134 | { | |
135 | Real dotProduct = 0.; | |
136 | for (int v=0; v<k; v++) | |
137 | dotProduct += gam[mi(u,v,n,k)] * log(pi[v]); | |
138 | a += dotProduct; | |
139 | } | |
140 | ||
141 | //tant que les proportions sont negatives | |
142 | int kk = 0, | |
143 | pi2AllPositive = 0; | |
144 | Real invN = 1./n; | |
145 | while (!pi2AllPositive) | |
146 | { | |
147 | //pi2 = pi + 0.1^kk * ((1/n)*gam2 - pi) | |
148 | Real pow_01_kk = pow(0.1,kk); | |
149 | for (int r=0; r<k; r++) | |
150 | pi2[r] = pi[r] + pow_01_kk * (invN*gam2[r] - pi[r]); | |
151 | //pi2AllPositive = all(pi2 >= 0) | |
152 | pi2AllPositive = 1; | |
153 | for (int r=0; r<k; r++) | |
154 | { | |
155 | if (pi2[r] < 0) | |
156 | { | |
157 | pi2AllPositive = 0; | |
158 | break; | |
159 | } | |
160 | } | |
161 | kk++; | |
162 | } | |
163 | ||
164 | //sum(pi^gamma * b) | |
165 | Real piPowGammaDotB = 0.; | |
166 | for (int v=0; v<k; v++) | |
167 | piPowGammaDotB += pow(pi[v],gamma) * b[v]; | |
168 | //sum(pi2^gamma * b) | |
169 | Real pi2PowGammaDotB = 0.; | |
170 | for (int v=0; v<k; v++) | |
171 | pi2PowGammaDotB += pow(pi2[v],gamma) * b[v]; | |
172 | //sum(gam2 * log(pi2)) | |
173 | Real gam2DotLogPi2 = 0.; | |
174 | for (int v=0; v<k; v++) | |
175 | gam2DotLogPi2 += gam2[v] * log(pi2[v]); | |
176 | ||
1196a43d | 177 | //t(m) la plus grande valeur dans la grille O.1^k tel que ce soit decroissante ou constante |
3453829e BA |
178 | while (-invN*a + lambda*piPowGammaDotB < -invN*gam2DotLogPi2 + lambda*pi2PowGammaDotB |
179 | && kk<1000) | |
180 | { | |
181 | Real pow_01_kk = pow(0.1,kk); | |
182 | //pi2 = pi + 0.1^kk * (1/n*gam2 - pi) | |
183 | for (int v=0; v<k; v++) | |
184 | pi2[v] = pi[v] + pow_01_kk * (invN*gam2[v] - pi[v]); | |
185 | //pi2 was updated, so we recompute pi2PowGammaDotB and gam2DotLogPi2 | |
186 | pi2PowGammaDotB = 0.; | |
187 | for (int v=0; v<k; v++) | |
188 | pi2PowGammaDotB += pow(pi2[v],gamma) * b[v]; | |
189 | gam2DotLogPi2 = 0.; | |
190 | for (int v=0; v<k; v++) | |
191 | gam2DotLogPi2 += gam2[v] * log(pi2[v]); | |
192 | kk++; | |
193 | } | |
194 | Real t = pow(0.1,kk); | |
195 | //sum(pi + t*(pi2-pi)) | |
196 | Real sumPiPlusTbyDiff = 0.; | |
197 | for (int v=0; v<k; v++) | |
198 | sumPiPlusTbyDiff += (pi[v] + t*(pi2[v] - pi[v])); | |
199 | //pi = (pi + t*(pi2-pi)) / sum(pi + t*(pi2-pi)) | |
200 | for (int v=0; v<k; v++) | |
201 | pi[v] = (pi[v] + t*(pi2[v] - pi[v])) / sumPiPlusTbyDiff; | |
202 | ||
203 | //Pour phi et rho | |
204 | for (int r=0; r<k; r++) | |
205 | { | |
206 | for (int mm=0; mm<m; mm++) | |
207 | { | |
208 | Real ps = 0., | |
209 | nY2 = 0.; | |
210 | // Compute ps, and nY2 = sum(Y2[,mm,r]^2) | |
211 | for (int i=0; i<n; i++) | |
212 | { | |
213 | //< X2[i,,r] , phi[,mm,r] > | |
214 | Real dotProduct = 0.; | |
215 | for (int u=0; u<p; u++) | |
216 | dotProduct += X2[ai(i,u,r,n,p,k)] * phi[ai(u,mm,r,p,m,k)]; | |
217 | //ps = ps + Y2[i,mm,r] * sum(X2[i,,r] * phi[,mm,r]) | |
218 | ps += Y2[ai(i,mm,r,n,m,k)] * dotProduct; | |
219 | nY2 += Y2[ai(i,mm,r,n,m,k)] * Y2[ai(i,mm,r,n,m,k)]; | |
220 | } | |
221 | //rho[mm,mm,r] = (ps+sqrt(ps^2+4*nY2*gam2[r])) / (2*nY2) | |
222 | rho[ai(mm,mm,r,m,m,k)] = (ps + sqrt(ps*ps + 4*nY2 * gam2[r])) / (2*nY2); | |
223 | } | |
224 | } | |
225 | ||
226 | for (int r=0; r<k; r++) | |
227 | { | |
228 | for (int j=0; j<p; j++) | |
229 | { | |
230 | for (int mm=0; mm<m; mm++) | |
231 | { | |
232 | //sum(phi[-j,mm,r] * Gram2[j,-j,r]) | |
233 | Real phiDotGram2 = 0.; | |
234 | for (int u=0; u<p; u++) | |
235 | { | |
236 | if (u != j) | |
237 | phiDotGram2 += phi[ai(u,mm,r,p,m,k)] * Gram2[ai(j,u,r,p,p,k)]; | |
238 | } | |
239 | //S[j,mm,r] = -rho[mm,mm,r]*ps2[j,mm,r] + sum(phi[-j,mm,r] * Gram2[j,-j,r]) | |
240 | S[ai(j,mm,r,p,m,k)] = -rho[ai(mm,mm,r,m,m,k)] * ps2[ai(j,mm,r,p,m,k)] | |
241 | + phiDotGram2; | |
242 | Real pirPowGamma = pow(pi[r],gamma); | |
243 | if (fabs(S[ai(j,mm,r,p,m,k)]) <= n*lambda*pirPowGamma) | |
244 | phi[ai(j,mm,r,p,m,k)] = 0.; | |
245 | else if (S[ai(j,mm,r,p,m,k)] > n*lambda*pirPowGamma) | |
246 | { | |
247 | phi[ai(j,mm,r,p,m,k)] = (n*lambda*pirPowGamma - S[ai(j,mm,r,p,m,k)]) | |
248 | / Gram2[ai(j,j,r,p,p,k)]; | |
249 | } | |
250 | else | |
251 | { | |
252 | phi[ai(j,mm,r,p,m,k)] = -(n*lambda*pirPowGamma + S[ai(j,mm,r,p,m,k)]) | |
253 | / Gram2[ai(j,j,r,p,p,k)]; | |
254 | } | |
255 | } | |
256 | } | |
257 | } | |
258 | ||
259 | ///////////// | |
260 | // Etape E // | |
261 | ///////////// | |
262 | ||
263 | // Precompute det(rho[,,r]) for r in 1...k | |
264 | int signum; | |
265 | for (int r=0; r<k; r++) | |
266 | { | |
267 | for (int u=0; u<m; u++) | |
268 | { | |
269 | for (int v=0; v<m; v++) | |
270 | matrix->data[u*m+v] = rho[ai(u,v,r,m,m,k)]; | |
271 | } | |
272 | gsl_linalg_LU_decomp(matrix, permutation, &signum); | |
273 | detRho[r] = gsl_linalg_LU_det(matrix, signum); | |
274 | } | |
275 | ||
276 | Real sumLogLLH = 0.; | |
277 | for (int i=0; i<n; i++) | |
278 | { | |
279 | for (int r=0; r<k; r++) | |
280 | { | |
281 | //compute Y[i,]%*%rho[,,r] | |
282 | for (int u=0; u<m; u++) | |
283 | { | |
284 | YiRhoR[u] = 0.; | |
285 | for (int v=0; v<m; v++) | |
286 | YiRhoR[u] += Y[mi(i,v,n,m)] * rho[ai(v,u,r,m,m,k)]; | |
287 | } | |
288 | ||
289 | //compute X[i,]%*%phi[,,r] | |
290 | for (int u=0; u<m; u++) | |
291 | { | |
292 | XiPhiR[u] = 0.; | |
293 | for (int v=0; v<p; v++) | |
294 | XiPhiR[u] += X[mi(i,v,n,p)] * phi[ai(v,u,r,p,m,k)]; | |
295 | } | |
296 | ||
297 | //compute sq norm || Y(:,i)*rho(:,:,r)-X(i,:)*phi(:,:,r) ||_2^2 | |
298 | sqNorm2[r] = 0.; | |
299 | for (int u=0; u<m; u++) | |
300 | sqNorm2[r] += (YiRhoR[u]-XiPhiR[u]) * (YiRhoR[u]-XiPhiR[u]); | |
301 | } | |
302 | ||
303 | // Update gam[,]; use log to avoid numerical problems | |
304 | Real maxLogGam = -INFINITY; | |
305 | for (int r=0; r<k; r++) | |
306 | { | |
307 | logGam[r] = log(pi[r]) - .5 * sqNorm2[r] + log(detRho[r]); | |
308 | if (maxLogGam < logGam[r]) | |
309 | maxLogGam = logGam[r]; | |
310 | } | |
311 | Real norm_fact = 0.; | |
312 | for (int r=0; r<k; r++) | |
313 | { | |
314 | logGam[r] = logGam[r] - maxLogGam; //adjust without changing proportions | |
315 | gam[mi(i,r,n,k)] = exp(logGam[r]); //gam[i, ] <- exp(logGam) | |
316 | norm_fact += gam[mi(i,r,n,k)]; //norm_fact <- sum(gam[i, ]) | |
317 | } | |
318 | // gam[i, ] <- gam[i, ] / norm_fact | |
319 | for (int r=0; r<k; r++) | |
320 | gam[mi(i,r,n,k)] /= norm_fact; | |
321 | ||
322 | sumLogLLH += log(norm_fact) - log(gaussConstM); | |
323 | } | |
324 | ||
325 | //sumPen = sum(pi^gamma * b) | |
326 | Real sumPen = 0.; | |
327 | for (int r=0; r<k; r++) | |
328 | sumPen += pow(pi[r],gamma) * b[r]; | |
329 | Real last_llh = *llh; | |
330 | //llh = -sumLogLLH/n #+ lambda*sumPen | |
331 | *llh = -invN * sumLogLLH; //+ lambda * sumPen; | |
332 | Real dist = ( ite==1 ? *llh : (*llh - last_llh) / (1. + fabs(*llh)) ); | |
333 | ||
334 | //Dist1 = max( abs(phi-Phi) / (1+abs(phi)) ) | |
335 | Real Dist1 = 0.; | |
336 | for (int u=0; u<p; u++) | |
337 | { | |
338 | for (int v=0; v<m; v++) | |
339 | { | |
340 | for (int w=0; w<k; w++) | |
341 | { | |
342 | Real tmpDist = fabs(phi[ai(u,v,w,p,m,k)]-Phi[ai(u,v,w,p,m,k)]) | |
343 | / (1.+fabs(phi[ai(u,v,w,p,m,k)])); | |
344 | if (tmpDist > Dist1) | |
345 | Dist1 = tmpDist; | |
346 | } | |
347 | } | |
348 | } | |
349 | //Dist2 = max( (abs(rho-Rho)) / (1+abs(rho)) ) | |
350 | Real Dist2 = 0.; | |
351 | for (int u=0; u<m; u++) | |
352 | { | |
353 | for (int v=0; v<m; v++) | |
354 | { | |
355 | for (int w=0; w<k; w++) | |
356 | { | |
357 | Real tmpDist = fabs(rho[ai(u,v,w,m,m,k)]-Rho[ai(u,v,w,m,m,k)]) | |
358 | / (1.+fabs(rho[ai(u,v,w,m,m,k)])); | |
359 | if (tmpDist > Dist2) | |
360 | Dist2 = tmpDist; | |
361 | } | |
362 | } | |
363 | } | |
364 | //Dist3 = max( (abs(pi-Pi)) / (1+abs(Pi))) | |
365 | Real Dist3 = 0.; | |
366 | for (int u=0; u<n; u++) | |
367 | { | |
368 | for (int v=0; v<k; v++) | |
369 | { | |
370 | Real tmpDist = fabs(pi[v]-Pi[v]) / (1.+fabs(pi[v])); | |
371 | if (tmpDist > Dist3) | |
372 | Dist3 = tmpDist; | |
373 | } | |
374 | } | |
375 | //dist2=max([max(Dist1),max(Dist2),max(Dist3)]); | |
376 | Real dist2 = Dist1; | |
377 | if (Dist2 > dist2) | |
378 | dist2 = Dist2; | |
379 | if (Dist3 > dist2) | |
380 | dist2 = Dist3; | |
381 | ||
382 | if (ite >= mini && (dist >= eps || dist2 >= sqrt(eps))) | |
383 | break; | |
384 | } | |
385 | ||
386 | //affec = apply(gam, 1, which.max) | |
387 | for (int i=0; i<n; i++) | |
388 | { | |
389 | Real rowMax = 0.; | |
390 | affec[i] = 0; | |
391 | for (int j=0; j<k; j++) | |
392 | { | |
393 | if (gam[mi(i,j,n,k)] > rowMax) | |
394 | { | |
395 | affec[i] = j+1; //R indices start at 1 | |
396 | rowMax = gam[mi(i,j,n,k)]; | |
397 | } | |
398 | } | |
399 | } | |
400 | ||
401 | //free memory | |
402 | free(b); | |
403 | free(gam); | |
404 | free(logGam); | |
405 | free(Phi); | |
406 | free(Rho); | |
407 | free(Pi); | |
408 | free(Gram2); | |
409 | free(ps2); | |
410 | free(detRho); | |
411 | gsl_matrix_free(matrix); | |
412 | gsl_permutation_free(permutation); | |
413 | free(XiPhiR); | |
414 | free(YiRhoR); | |
415 | free(gam2); | |
416 | free(pi2); | |
417 | free(X2); | |
418 | free(Y2); | |
419 | free(sqNorm2); | |
0ba1b11c | 420 | } |