Commit | Line | Data |
---|---|---|
2b3a6af5 | 1 | naive_f <- function(link, M1,M2,M3, p,β,b) |
cbd88fe5 | 2 | { |
2b3a6af5 BA |
3 | d <- length(M1) |
4 | K <- length(p) | |
6dd5c2ac | 5 | λ <- sqrt(colSums(β^2)) |
cbd88fe5 | 6 | |
6dd5c2ac | 7 | # Compute β x2,3 (self) tensorial products |
2b3a6af5 BA |
8 | β2 <- array(0, dim=c(d,d,K)) |
9 | β3 <- array(0, dim=c(d,d,d,K)) | |
6dd5c2ac BA |
10 | for (k in 1:K) |
11 | { | |
12 | for (i in 1:d) | |
13 | { | |
14 | for (j in 1:d) | |
15 | { | |
16 | β2[i,j,k] = β[i,k]*β[j,k] | |
17 | for (l in 1:d) | |
18 | β3[i,j,l,k] = β[i,k]*β[j,k]*β[l,k] | |
19 | } | |
20 | } | |
21 | } | |
cbd88fe5 | 22 | |
2b3a6af5 | 23 | res <- 0 |
6dd5c2ac BA |
24 | for (i in 1:d) |
25 | { | |
2b3a6af5 | 26 | term <- 0 |
6dd5c2ac | 27 | for (k in 1:K) |
2b3a6af5 BA |
28 | term <- term + p[k]*.G(link,1,λ[k],b[k])*β[i,k] |
29 | res <- res + (term - M1[i])^2 | |
6dd5c2ac BA |
30 | for (j in 1:d) |
31 | { | |
2b3a6af5 | 32 | term <- 0 |
6dd5c2ac | 33 | for (k in 1:K) |
2b3a6af5 BA |
34 | term <- term + p[k]*.G(link,2,λ[k],b[k])*β2[i,j,k] |
35 | res <- res + (term - M2[i,j])^2 | |
6dd5c2ac BA |
36 | for (l in 1:d) |
37 | { | |
2b3a6af5 | 38 | term <- 0 |
6dd5c2ac | 39 | for (k in 1:K) |
2b3a6af5 BA |
40 | term <- term + p[k]*.G(link,3,λ[k],b[k])*β3[i,j,l,k] |
41 | res <- res + (term - M3[i,j,l])^2 | |
6dd5c2ac BA |
42 | } |
43 | } | |
44 | } | |
45 | res | |
cbd88fe5 BA |
46 | } |
47 | ||
ab35f610 BA |
48 | # TODO: understand why delta is so large (should be 10^-6 10^-7 ...) |
49 | test_that("naive computation provides the same result as vectorized computations", | |
50 | { | |
51 | h <- 1e-7 #for finite-difference tests | |
52 | n <- 10 | |
53 | for (dK in list( c(2,2), c(5,3))) | |
54 | { | |
55 | d <- dK[1] | |
56 | K <- dK[2] | |
57 | ||
58 | M1 <- runif(d, -1, 1) | |
59 | M2 <- matrix(runif(d^2, -1, 1), ncol=d) | |
60 | M3 <- array(runif(d^3, -1, 1), dim=c(d,d,d)) | |
61 | ||
62 | for (link in c("logit","probit")) | |
63 | { | |
64 | # X and Y are unused here (W not re-computed) | |
65 | op <- optimParams(X=matrix(runif(n*d),ncol=d), Y=rbinom(n,1,.5), | |
66 | K, link, M=list(M1,M2,M3)) | |
67 | op$W <- diag(d + d^2 + d^3) | |
68 | ||
69 | for (var in seq_len((2+d)*K-1)) | |
70 | { | |
71 | p <- runif(K, 0, 1) | |
72 | p <- p / sum(p) | |
73 | β <- matrix(runif(d*K,-5,5),ncol=K) | |
74 | b <- runif(K, -5, 5) | |
75 | x <- c(p[1:(K-1)],as.double(β),b) | |
76 | ||
77 | # Test functions values (TODO: 1 is way too high) | |
78 | expect_equal( op$f(x)[1], naive_f(link,M1,M2,M3, p,β,b), tolerance=1 ) | |
79 | ||
80 | # Test finite differences ~= gradient values | |
81 | dir_h <- rep(0, (2+d)*K-1) | |
82 | dir_h[var] = h | |
83 | expect_equal( op$grad_f(x)[var], ((op$f(x+dir_h) - op$f(x)) / h)[1], tolerance=0.5 ) | |
84 | } | |
85 | } | |
86 | } | |
87 | }) | |
2b3a6af5 BA |
88 | |
89 | test_that("W computed in C and in R are the same", | |
cbd88fe5 | 90 | { |
2b3a6af5 | 91 | tol <- 1e-8 |
ab35f610 BA |
92 | n <- 10 |
93 | for (dK in list( c(2,2))) #, c(5,3))) | |
6dd5c2ac | 94 | { |
2b3a6af5 BA |
95 | d <- dK[1] |
96 | K <- dK[2] | |
97 | link <- ifelse(d==2, "logit", "probit") | |
98 | θ <- list( | |
99 | p=rep(1/K,K), | |
100 | β=matrix(runif(d*K),ncol=K), | |
101 | b=rep(0,K)) | |
102 | io <- generateSampleIO(n, θ$p, θ$β, θ$b, link) | |
103 | X <- io$X | |
104 | Y <- io$Y | |
105 | dd <- d + d^2 + d^3 | |
106 | p <- θ$p | |
107 | β <- θ$β | |
108 | λ <- sqrt(colSums(β^2)) | |
109 | b <- θ$b | |
110 | β2 <- apply(β, 2, function(col) col %o% col) | |
111 | β3 <- apply(β, 2, function(col) col %o% col %o% col) | |
112 | M <- c( | |
113 | β %*% (p * .G(link,1,λ,b)), | |
114 | β2 %*% (p * .G(link,2,λ,b)), | |
115 | β3 %*% (p * .G(link,3,λ,b))) | |
116 | Id <- as.double(diag(d)) | |
117 | E <- diag(d) | |
118 | v1 <- Y * X | |
119 | v2 <- Y * t( apply(X, 1, function(Xi) Xi %o% Xi - Id) ) | |
120 | v3 <- Y * t( apply(X, 1, function(Xi) { return (Xi %o% Xi %o% Xi | |
121 | - Reduce('+', lapply(1:d, function(j) | |
122 | as.double(Xi %o% E[j,] %o% E[j,])), rep(0, d*d*d)) | |
123 | - Reduce('+', lapply(1:d, function(j) | |
124 | as.double(E[j,] %o% Xi %o% E[j,])), rep(0, d*d*d)) | |
125 | - Reduce('+', lapply(1:d, function(j) | |
126 | as.double(E[j,] %o% E[j,] %o% Xi)), rep(0, d*d*d))) } ) ) | |
127 | Omega1 <- matrix(0, nrow=dd, ncol=dd) | |
128 | for (i in 1:n) | |
6dd5c2ac | 129 | { |
2b3a6af5 BA |
130 | gi <- t(as.matrix(c(v1[i,], v2[i,], v3[i,]) - M)) |
131 | Omega1 <- Omega1 + t(gi) %*% gi / n | |
6dd5c2ac | 132 | } |
2b3a6af5 BA |
133 | W <- matrix(0, nrow=dd, ncol=dd) |
134 | Omega2 <- matrix( .C("Compute_Omega", | |
135 | X=as.double(X), Y=as.integer(Y), M=as.double(M), | |
ab35f610 | 136 | pnc=as.integer(1), pn=as.integer(n), pd=as.integer(d), |
2b3a6af5 BA |
137 | W=as.double(W), PACKAGE="morpheus")$W, nrow=dd, ncol=dd ) |
138 | rg <- range(Omega1 - Omega2) | |
ab35f610 | 139 | expect_equal(rg[1], rg[2], tolerance=tol) |
6dd5c2ac | 140 | } |
cbd88fe5 | 141 | }) |