Commit | Line | Data |
---|---|---|
0ba1b11c | 1 | #' EMGLLF |
3453829e | 2 | #' |
3921ba9b | 3 | #' Run a generalized EM algorithm developped for mixture of Gaussian regression |
e9db7970 | 4 | #' models with variable selection by an extension of the Lasso estimator (regularization parameter lambda). |
5 | #' Reparametrization is done to ensure invariance by homothetic transformation. | |
6 | #' It returns a collection of models, varying the number of clusters and the sparsity in the regression mean. | |
3453829e BA |
7 | #' |
8 | #' @param phiInit an initialization for phi | |
9 | #' @param rhoInit an initialization for rho | |
10 | #' @param piInit an initialization for pi | |
11 | #' @param gamInit initialization for the a posteriori probabilities | |
12 | #' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10 | |
13 | #' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100 | |
14 | #' @param gamma integer for the power in the penaly, by default = 1 | |
15 | #' @param lambda regularization parameter in the Lasso estimation | |
16 | #' @param X matrix of covariates (of size n*p) | |
17 | #' @param Y matrix of responses (of size n*m) | |
18 | #' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4 | |
1196a43d | 19 | #' @param fast boolean to enable or not the C function call |
3453829e | 20 | #' |
6af1d489 BA |
21 | #' @return A list (corresponding to the model collection) defined by (phi,rho,pi,llh,S,affec): |
22 | #' phi : regression mean for each cluster, an array of size p*m*k | |
23 | #' rho : variance (homothetic) for each cluster, an array of size m*m*k | |
24 | #' pi : proportion for each cluster, a vector of size k | |
25 | #' llh : log likelihood with respect to the training set | |
26 | #' S : selected variables indexes, an array of size p*m*k | |
e9db7970 | 27 | #' affec : cluster affectation for each observation (of the training set) |
3453829e BA |
28 | #' |
29 | #' @export | |
0ba1b11c | 30 | EMGLLF <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, |
3453829e BA |
31 | X, Y, eps, fast) |
32 | { | |
33 | if (!fast) | |
34 | { | |
35 | # Function in R | |
0ba1b11c | 36 | return(.EMGLLF_R(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, |
3453829e BA |
37 | X, Y, eps)) |
38 | } | |
39 | ||
40 | # Function in C | |
0ba1b11c | 41 | .Call("EMGLLF", phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, |
1196a43d | 42 | X, Y, eps, PACKAGE = "valse") |
3453829e BA |
43 | } |
44 | ||
45 | # R version - slow but easy to read | |
0ba1b11c | 46 | .EMGLLF_R <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, |
3453829e BA |
47 | X, Y, eps) |
48 | { | |
49 | # Matrix dimensions | |
50 | n <- nrow(X) | |
51 | p <- ncol(X) | |
52 | m <- ncol(Y) | |
53 | k <- length(piInit) | |
54 | ||
55 | # Adjustments required when p==1 or m==1 (var.sel. or output dim 1) | |
56 | if (p==1 || m==1) | |
57 | phiInit <- array(phiInit, dim=c(p,m,k)) | |
58 | if (m==1) | |
59 | rhoInit <- array(rhoInit, dim=c(m,m,k)) | |
60 | ||
61 | # Outputs | |
62 | phi <- phiInit | |
63 | rho <- rhoInit | |
64 | pi <- piInit | |
65 | llh <- -Inf | |
66 | S <- array(0, dim = c(p, m, k)) | |
67 | ||
68 | # Algorithm variables | |
69 | gam <- gamInit | |
70 | Gram2 <- array(0, dim = c(p, p, k)) | |
71 | ps2 <- array(0, dim = c(p, m, k)) | |
72 | X2 <- array(0, dim = c(n, p, k)) | |
73 | Y2 <- array(0, dim = c(n, m, k)) | |
74 | ||
75 | for (ite in 1:maxi) | |
76 | { | |
77 | # Remember last pi,rho,phi values for exit condition in the end of loop | |
78 | Phi <- phi | |
79 | Rho <- rho | |
80 | Pi <- pi | |
81 | ||
82 | # Computations associated to X and Y | |
83 | for (r in 1:k) | |
84 | { | |
85 | for (mm in 1:m) | |
86 | Y2[, mm, r] <- sqrt(gam[, r]) * Y[, mm] | |
87 | for (i in 1:n) | |
88 | X2[i, , r] <- sqrt(gam[i, r]) * X[i, ] | |
89 | for (mm in 1:m) | |
90 | ps2[, mm, r] <- crossprod(X2[, , r], Y2[, mm, r]) | |
91 | for (j in 1:p) | |
92 | { | |
93 | for (s in 1:p) | |
94 | Gram2[j, s, r] <- crossprod(X2[, j, r], X2[, s, r]) | |
95 | } | |
96 | } | |
97 | ||
98 | ## M step | |
99 | ||
100 | # For pi | |
101 | b <- sapply(1:k, function(r) sum(abs(phi[, , r]))) | |
102 | gam2 <- colSums(gam) | |
103 | a <- sum(gam %*% log(pi)) | |
104 | ||
105 | # While the proportions are nonpositive | |
106 | kk <- 0 | |
107 | pi2AllPositive <- FALSE | |
108 | while (!pi2AllPositive) | |
109 | { | |
110 | pi2 <- pi + 0.1^kk * ((1/n) * gam2 - pi) | |
111 | pi2AllPositive <- all(pi2 >= 0) | |
112 | kk <- kk + 1 | |
113 | } | |
114 | ||
115 | # t(m) is the largest value in the grid O.1^k such that it is nonincreasing | |
116 | while (kk < 1000 && -a/n + lambda * sum(pi^gamma * b) < | |
117 | # na.rm=TRUE to handle 0*log(0) | |
118 | -sum(gam2 * log(pi2), na.rm=TRUE)/n + lambda * sum(pi2^gamma * b)) | |
119 | { | |
120 | pi2 <- pi + 0.1^kk * (1/n * gam2 - pi) | |
121 | kk <- kk + 1 | |
122 | } | |
123 | t <- 0.1^kk | |
124 | pi <- (pi + t * (pi2 - pi))/sum(pi + t * (pi2 - pi)) | |
125 | ||
126 | # For phi and rho | |
127 | for (r in 1:k) | |
128 | { | |
129 | for (mm in 1:m) | |
130 | { | |
131 | ps <- 0 | |
132 | for (i in 1:n) | |
133 | ps <- ps + Y2[i, mm, r] * sum(X2[i, , r] * phi[, mm, r]) | |
134 | nY2 <- sum(Y2[, mm, r]^2) | |
135 | rho[mm, mm, r] <- (ps + sqrt(ps^2 + 4 * nY2 * gam2[r]))/(2 * nY2) | |
136 | } | |
137 | } | |
138 | ||
139 | for (r in 1:k) | |
140 | { | |
141 | for (j in 1:p) | |
142 | { | |
143 | for (mm in 1:m) | |
144 | { | |
145 | S[j, mm, r] <- -rho[mm, mm, r] * ps2[j, mm, r] + | |
146 | sum(phi[-j, mm, r] * Gram2[j, -j, r]) | |
147 | if (abs(S[j, mm, r]) <= n * lambda * (pi[r]^gamma)) { | |
148 | phi[j, mm, r] <- 0 | |
149 | } else if (S[j, mm, r] > n * lambda * (pi[r]^gamma)) { | |
150 | phi[j, mm, r] <- (n * lambda * (pi[r]^gamma) - S[j, mm, r])/Gram2[j, j, r] | |
151 | } else { | |
152 | phi[j, mm, r] <- -(n * lambda * (pi[r]^gamma) + S[j, mm, r])/Gram2[j, j, r] | |
153 | } | |
154 | } | |
155 | } | |
156 | } | |
157 | ||
158 | ## E step | |
159 | ||
160 | # Precompute det(rho[,,r]) for r in 1...k | |
161 | detRho <- sapply(1:k, function(r) gdet(rho[, , r])) | |
162 | sumLogLLH <- 0 | |
163 | for (i in 1:n) | |
164 | { | |
165 | # Update gam[,]; use log to avoid numerical problems | |
166 | logGam <- sapply(1:k, function(r) { | |
167 | log(pi[r]) + log(detRho[r]) - 0.5 * | |
168 | sum((Y[i, ] %*% rho[, , r] - X[i, ] %*% phi[, , r])^2) | |
169 | }) | |
170 | ||
171 | logGam <- logGam - max(logGam) #adjust without changing proportions | |
172 | gam[i, ] <- exp(logGam) | |
173 | norm_fact <- sum(gam[i, ]) | |
174 | gam[i, ] <- gam[i, ] / norm_fact | |
175 | sumLogLLH <- sumLogLLH + log(norm_fact) - log((2 * base::pi)^(m/2)) | |
176 | } | |
177 | ||
178 | sumPen <- sum(pi^gamma * b) | |
179 | last_llh <- llh | |
180 | llh <- -sumLogLLH/n #+ lambda * sumPen | |
181 | dist <- ifelse(ite == 1, llh, (llh - last_llh)/(1 + abs(llh))) | |
182 | Dist1 <- max((abs(phi - Phi))/(1 + abs(phi))) | |
183 | Dist2 <- max((abs(rho - Rho))/(1 + abs(rho))) | |
184 | Dist3 <- max((abs(pi - Pi))/(1 + abs(Pi))) | |
185 | dist2 <- max(Dist1, Dist2, Dist3) | |
186 | ||
187 | if (ite >= mini && (dist >= eps || dist2 >= sqrt(eps))) | |
188 | break | |
189 | } | |
190 | ||
191 | affec = apply(gam, 1, which.max) | |
192 | list(phi = phi, rho = rho, pi = pi, llh = llh, S = S, affec=affec) | |
193 | } |