From: Benjamin Auder Date: Mon, 6 Mar 2017 19:18:22 +0000 (+0100) Subject: Fix unit tests X-Git-Url: https://git.auder.net/game/current/doc/html/packages.html?a=commitdiff_plain;h=8702eb86906bd6d59e07bb887e690a20f29be63f;p=epclust.git Fix unit tests --- diff --git a/.gitignore b/.gitignore index 8db5c77..e735132 100644 --- a/.gitignore +++ b/.gitignore @@ -2,7 +2,7 @@ /data/* !/data/README !/data/preprocessing/ -/data/prrprocessing/* +/data/preprocessing/* !/data/preprocessing/convert.c !/data/preprocessing/Makefile diff --git a/TODO b/TODO index f5e0015..275c10d 100644 --- a/TODO +++ b/TODO @@ -26,3 +26,15 @@ utiliser Rcpp ? #fct qui pour deux series (ID, medoides) renvoie distance WER (Rwave ou à moi) #transformee croisee , smoothing lissage 3 composantes , + calcul pour WER #determiner nvoice noctave (entre octave + petit et + grand) + +#TODO: load some dataset ASCII CSV +#data_bin_file <<- "/tmp/epclust_test.bin" +#unlink(data_bin_file) + +#https://stat.ethz.ch/pipermail/r-help/2011-June/280133.html +#randCov = function(d) +#{ +# x <- matrix(rnorm(d*d), nrow=d) +# x <- x / sqrt(rowSums(x^2)) +# x %*% t(x) +#} diff --git a/epclust/DESCRIPTION b/epclust/DESCRIPTION index c607000..030e944 100644 --- a/epclust/DESCRIPTION +++ b/epclust/DESCRIPTION @@ -23,7 +23,6 @@ Suggests: License: MIT + file LICENSE RoxygenNote: 5.0.1 Collate: - 'utils.R' 'clustering.R' 'de_serialize.R' 'main.R' diff --git a/epclust/R/clustering.R b/epclust/R/clustering.R index fce1b1c..493f90f 100644 --- a/epclust/R/clustering.R +++ b/epclust/R/clustering.R @@ -2,16 +2,24 @@ clusteringTask = function(indices, getCoefs, K1, nb_series_per_chunk, ncores) { cl = parallel::makeCluster(ncores) + parallel::clusterExport(cl, varlist=c("getCoefs","K1"), envir=environment()) repeat { - nb_workers = max( 1, round( length(indices) / nb_series_per_chunk ) ) - indices_workers = lapply(seq_len(nb_workers), function(i) { - upper_bound = ifelse( i 0) + { + index = rem%%nb_workers + 1 + indices_workers[[index]] = c(indices_workers[[index]], tail(indices,rem)) + rem = rem - 1 + } + indices = unlist( parallel::parLapply( cl, indices_workers, function(inds) { + require("epclust", quietly=TRUE) + inds[ computeClusters1(getCoefs(inds), K1) ] + } ) ) if (length(indices) == K1) break } @@ -21,20 +29,18 @@ clusteringTask = function(indices, getCoefs, K1, nb_series_per_chunk, ncores) # Apply the clustering algorithm (PAM) on a coeffs or distances matrix computeClusters1 = function(coefs, K1) - indices[ cluster::pam(coefs, K1, diss=FALSE)$id.med ] + cluster::pam(coefs, K1, diss=FALSE)$id.med # Cluster a chunk of series inside one task (~max nb_series_per_chunk) computeClusters2 = function(medoids, K2, getRefSeries, nb_series_per_chunk) { synchrones = computeSynchrones(medoids, getRefSeries, nb_series_per_chunk) - cluster::pam(computeWerDists(synchrones), K2, diss=TRUE)$medoids + medoids[ cluster::pam(computeWerDists(synchrones), K2, diss=TRUE)$medoids , ] } # Compute the synchrones curves (sum of clusters elements) from a clustering result computeSynchrones = function(medoids, getRefSeries, nb_series_per_chunk) { - #les getSeries(indices) sont les medoides --> init vect nul pour chacun, puis incr avec les - #courbes (getSeriesForSynchrones) les plus proches... --> au sens de la norme L2 ? K = nrow(medoids) synchrones = matrix(0, nrow=K, ncol=ncol(medoids)) counts = rep(0,K) @@ -48,18 +54,20 @@ computeSynchrones = function(medoids, getRefSeries, nb_series_per_chunk) #get medoids indices for this chunk of series for (i in seq_len(nrow(ref_series))) { - j = which.min( rowSums( sweep(medoids, 2, series[i,], '-')^2 ) ) - synchrones[j,] = synchrones[j,] + series[i,] + j = which.min( rowSums( sweep(medoids, 2, ref_series[i,], '-')^2 ) ) + synchrones[j,] = synchrones[j,] + ref_series[i,] counts[j] = counts[j] + 1 } index = index + nb_series_per_chunk } #NOTE: odds for some clusters to be empty? (when series already come from stage 2) - sweep(synchrones, 1, counts, '/') + # ...maybe; but let's hope resulting K1' be still quite bigger than K2 + synchrones = sweep(synchrones, 1, counts, '/') + synchrones[ sapply(seq_len(K), function(i) all(!is.nan(synchrones[i,]))) , ] } # Compute the WER distance between the synchrones curves (in rows) -computeWerDist = function(curves) +computeWerDists = function(curves) { if (!require("Rwave", quietly=TRUE)) stop("Unable to load Rwave library") diff --git a/epclust/R/de_serialize.R b/epclust/R/de_serialize.R index 682db53..242e23a 100644 --- a/epclust/R/de_serialize.R +++ b/epclust/R/de_serialize.R @@ -62,12 +62,16 @@ serialize = function(data_ascii, data_bin_file, nb_per_chunk, getDataInFile = function(indices, data_bin_file, nbytes=4, endian=.Platform$endian) { data_bin = file(data_bin_file, "rb") + data_size = file.info(data_bin)$size data_length = readBin(data_bin, "integer", 1, 8, endian) #Ou t(sapply(...)) (+ rapide ?) data_ascii = do.call( rbind, lapply( indices, function(i) { - ignored = seek(data_bin, 8+((i-1)*data_length*nbytes)) + offset = 8+(i-1)*data_length*nbytes + if (offset > data_size) + return (vector("double",0)) + ignored = seek(data_bin, offset) readBin(data_bin, "double", n=data_length, size=nbytes) } ) ) close(data_bin) - data_ascii + if (ncol(data_ascii)>0) data_ascii else NULL } diff --git a/epclust/R/main.R b/epclust/R/main.R index 280cc17..5e47f19 100644 --- a/epclust/R/main.R +++ b/epclust/R/main.R @@ -1,34 +1,38 @@ -#' @include utils.R +#' @include de_serialize.R #' @include clustering.R NULL -#' Cluster power curves with PAM in parallel CLAWS: CLustering with wAvelets and Wer distanceS +#' CLAWS: CLustering with wAvelets and Wer distanceS #' #' Groups electricity power curves (or any series of similar nature) by applying PAM -#' algorithm in parallel to chunks of size \code{nb_series_per_chunk} +#' algorithm in parallel to chunks of size \code{nb_series_per_chunk}. Input series +#' must be sampled on the same time grid, no missing values. #' -#' @param data Access to the data, which can be of one of the three following types: -#' \itemize{ -#' \item data.frame: each line contains its ID in the first cell, and all values after -#' \item connection: any R connection object (e.g. a file) providing lines as described above -#' \item function: a custom way to retrieve the curves; it has two arguments: the ranks to be -#' retrieved, and the IDs - at least one of them must be present (priority: ranks). -#' } +#' @param getSeries Access to the (time-)series, which can be of one of the three +#' following types: +#' \itemize{ +#' \item matrix: each line contains all the values for one time-serie, ordered by time +#' \item connection: any R connection object (e.g. a file) providing lines as described above +#' \item function: a custom way to retrieve the curves; it has only one argument: +#' the indices of the series to be retrieved. See examples +#' } #' @param K1 Number of super-consumers to be found after stage 1 (K1 << N) #' @param K2 Number of clusters to be found after stage 2 (K2 << K1) +#' @param random TRUE (default) for random chunks repartition +#' @param wf Wavelet transform filter; see ?wavelets::wt.filter. Default: haar +#' @param WER "end" to apply stage 2 after stage 1 has fully iterated, or "mix" to apply stage 2 +#' at the end of each task #' @param ntasks Number of tasks (parallel iterations to obtain K1 medoids); default: 1. #' Note: ntasks << N, so that N is "roughly divisible" by N (number of series) -#' @param nb_series_per_chunk (Maximum) number of series in each group, inside a task -#' @param min_series_per_chunk Minimum number of series in each group -#' @param wf Wavelet transform filter; see ?wt.filter. Default: haar -#' @param WER "end" to apply stage 2 after stage 1 has iterated and finished, or "mix" -#' to apply it after every stage 1 #' @param ncores_tasks "MPI" number of parallel tasks (1 to disable: sequential tasks) #' @param ncores_clust "OpenMP" number of parallel clusterings in one task -#' @param random Randomize chunks repartition -#' @param ... Other arguments to be passed to \code{data} function +#' @param nb_series_per_chunk (~Maximum) number of series in each group, inside a task +#' @param min_series_per_chunk Minimum number of series in each group +#' @param sep Separator in CSV input file (relevant only if getSeries is a file name) +#' @param nbytes Number of bytes to serialize a floating-point number; 4 or 8 +#' @param endian Endianness to use for (de)serialization. Use "little" or "big" for portability #' -#' @return A data.frame of the final medoids curves (identifiers + values) +#' @return A matrix of the final medoids curves #' #' @examples #' getData = function(start, n) { @@ -95,10 +99,10 @@ claws = function(getSeries, K1, K2, series = getSeries((index-1)+seq_len(nb_series_per_chunk)) if (is.null(series)) break - coeffs_chunk = curvesToCoeffs(series, wf) - serialize(coeffs_chunk, coefs_file, nb_series_per_chunk, sep, nbytes, endian) + coefs_chunk = curvesToCoefs(series, wf) + serialize(coefs_chunk, coefs_file, nb_series_per_chunk, sep, nbytes, endian) index = index + nb_series_per_chunk - nb_curves = nb_curves + nrow(coeffs_chunk) + nb_curves = nb_curves + nrow(coefs_chunk) } getCoefs = function(indices) getDataInFile(indices, coefs_file, nbytes, endian) @@ -129,7 +133,7 @@ claws = function(getSeries, K1, K2, }) ) parallel::stopCluster(cl) - getSeriesForSynchrones = getSeries + getRefSeries = getSeries synchrones_file = paste(bin_dir,"synchrones",sep="") ; unlink(synchrones_file) if (WER=="mix") { @@ -144,8 +148,8 @@ claws = function(getSeries, K1, K2, series = getSeries((index-1)+seq_len(nb_series_per_chunk)) if (is.null(series)) break - coeffs_chunk = curvesToCoeffs(series, wf) - serialize(coeffs_chunk, coefs_file, nb_series_per_chunk, sep, nbytes, endian) + coefs_chunk = curvesToCoefs(series, wf) + serialize(coefs_chunk, coefs_file, nb_series_per_chunk, sep, nbytes, endian) index = index + nb_series_per_chunk } } @@ -153,20 +157,20 @@ claws = function(getSeries, K1, K2, # Run step2 on resulting indices or series (from file) indices_medoids = clusteringTask( indices, getCoefs, K1, nb_series_per_chunk, ncores_tasks*ncores_clust) - computeClusters2(getSeries(indices_medoids),K2,getSeriesForSynchrones,nb_series_per_chunk) + computeClusters2(getSeries(indices_medoids),K2,getRefSeries,nb_series_per_chunk) } # helper -curvesToCoeffs = function(series, wf) +curvesToCoefs = function(series, wf) { L = length(series[1,]) D = ceiling( log2(L) ) nb_sample_points = 2^D - apply(series, 1, function(x) { + t( apply(series, 1, function(x) { interpolated_curve = spline(1:L, x, n=nb_sample_points)$y W = wavelets::dwt(interpolated_curve, filter=wf, D)@W rev( sapply( W, function(v) ( sqrt( sum(v^2) ) ) ) ) - }) + }) ) } # helper diff --git a/epclust/data/TODO_example.RData b/epclust/data/TODO_example.RData deleted file mode 100644 index e69de29..0000000 diff --git a/epclust/inst/testdata/TODO_clusteringInput.csv b/epclust/inst/testdata/TODO_clusteringInput.csv deleted file mode 100644 index e69de29..0000000 diff --git a/epclust/tests/testthat/test.clustering.R b/epclust/tests/testthat/test.clustering.R index 527f6bd..a4d59d9 100644 --- a/epclust/tests/testthat/test.clustering.R +++ b/epclust/tests/testthat/test.clustering.R @@ -1,25 +1,140 @@ context("clustering") -#TODO: load some dataset ASCII CSV -#data_bin_file <<- "/tmp/epclust_test.bin" -#unlink(data_bin_file) +#shorthand: map 1->1, 2->2, 3->3, 4->1, ..., 149->2, 150->3, ... (is base==3) +I = function(i, base) + (i-1) %% base + 1 test_that("computeClusters1 behave as expected", { + require("MASS", quietly=TRUE) + require("clue", quietly=TRUE) + # 3 gaussian clusters, 300 items; and then 7 gaussian clusters, 490 items + n = 300 + d = 5 + K = 3 + for (ndK in list( c(300,5,3), c(490,10,7) )) + { + n = ndK[1] ; d = ndK[2] ; K = ndK[3] + cs = n/K #cluster size + Id = diag(d) + coefs = do.call(rbind, + lapply(1:K, function(i) MASS::mvrnorm(cs, c(rep(0,(i-1)),5,rep(0,d-i)), Id))) + indices_medoids = computeClusters1(coefs, K) + # Get coefs assignments (to medoids) + assignment = sapply(seq_len(n), function(i) + which.min( rowSums( sweep(coefs[indices_medoids,],2,coefs[i,],'-')^2 ) ) ) + for (i in 1:K) + expect_equal(sum(assignment==i), cs, tolerance=5) + + costs_matrix = matrix(nrow=K,ncol=K) + for (i in 1:K) + { + for (j in 1:K) + { + # assign i (in result) to j (order 1,2,3) + costs_matrix[i,j] = abs( mean(assignment[((i-1)*cs+1):(i*cs)]) - j ) + } + } + permutation = as.integer( clue::solve_LSAP(costs_matrix) ) + for (i in 1:K) + { + expect_equal( + mean(assignment[((i-1)*cs+1):(i*cs)]), permutation[i], tolerance=0.05) + } + } }) test_that("computeSynchrones behave as expected", { + n = 300 + x = seq(0,9.5,0.1) + L = length(x) #96 1/4h + K = 3 + s1 = cos(x) + s2 = sin(x) + s3 = c( s1[1:(L%/%2)] , s2[(L%/%2+1):L] ) + #sum((s1-s2)^2) == 96 + #sum((s1-s3)^2) == 58 + #sum((s2-s3)^2) == 38 + s = list(s1, s2, s3) + series = matrix(nrow=n, ncol=L) + for (i in seq_len(n)) + series[i,] = s[[I(i,K)]] + rnorm(L,sd=0.01) + getRefSeries = function(indices) { + indices = indices[indices < n] + if (length(indices)>0) series[indices,] else NULL + } + synchrones = computeSynchrones(rbind(s1,s2,s3), getRefSeries, 100) + expect_equal(dim(synchrones), c(K,L)) + for (i in 1:K) + expect_equal(synchrones[i,], s[[i]], tolerance=0.01) }) +computeDistortion = function(series, medoids) +{ + n = nrow(series) ; L = ncol(series) + distortion = 0. + for (i in seq_len(n)) + distortion = distortion + min( rowSums( sweep(medoids,2,series[i,],'-')^2 ) / L ) + distortion / n +} + test_that("computeClusters2 behave as expected", { + n = 900 + x = seq(0,9.5,0.1) + L = length(x) #96 1/4h + K1 = 60 + K2 = 3 + #for (i in 1:60) {plot(x^(1+i/30)*cos(x+i),type="l",col=i,ylim=c(-50,50)); par(new=TRUE)} + s = lapply( seq_len(K1), function(i) x^(1+i/30)*cos(x+i) ) + series = matrix(nrow=n, ncol=L) + for (i in seq_len(n)) + series[i,] = s[[I(i,K1)]] + rnorm(L,sd=0.01) + getRefSeries = function(indices) { + indices = indices[indices < n] + if (length(indices)>0) series[indices,] else NULL + } + # Artificially simulate 60 medoids - perfect situation, all equal to one of the refs + medoids_K1 = do.call(rbind, lapply( 1:K1, function(i) s[[I(i,K1)]] ) ) + medoids_K2 = computeClusters2(medoids_K1, K2, getRefSeries, 75) + expect_equal(dim(medoids_K2), c(K2,L)) + # Not easy to evaluate result: at least we expect it to be better than random selection of + # medoids within 1...K1 (among references) + + distorGood = computeDistortion(series, medoids_K2) + for (i in 1:3) + expect_lte( distorGood, computeDistortion(series,medoids_K1[sample(1:K1, K2),]) ) }) test_that("clusteringTask + computeClusters2 behave as expected", { + n = 900 + x = seq(0,9.5,0.1) + L = length(x) #96 1/4h + K1 = 60 + K2 = 3 + s = lapply( seq_len(K1), function(i) x^(1+i/30)*cos(x+i) ) + series = matrix(nrow=n, ncol=L) + for (i in seq_len(n)) + series[i,] = s[[I(i,K1)]] + rnorm(L,sd=0.01) + getSeries = function(indices) { + indices = indices[indices <= n] + if (length(indices)>0) series[indices,] else NULL + } + wf = "haar" + getCoefs = function(indices) curvesToCoefs(series[indices,],wf) + medoids_K1 = getSeries( clusteringTask(1:n, getCoefs, K1, 75, 4) ) + medoids_K2 = computeClusters2(medoids_K1, K2, getSeries, 120) + expect_equal(dim(medoids_K1), c(K1,L)) + expect_equal(dim(medoids_K2), c(K2,L)) + # Not easy to evaluate result: at least we expect it to be better than random selection of + # medoids within 1...K1 (among references) + distorGood = computeDistortion(series, medoids_K2) + for (i in 1:3) + expect_lte( distorGood, computeDistortion(series,medoids_K1[sample(1:K1, K2),]) ) })