finish simplifications on stage2.R
authorBenjamin Auder <benjamin.auder@somewhere>
Sat, 18 Feb 2017 13:26:42 +0000 (14:26 +0100)
committerBenjamin Auder <benjamin.auder@somewhere>
Sat, 18 Feb 2017 13:26:42 +0000 (14:26 +0100)
epclust/R/stage2.R

index fa55356..3ccbbad 100644 (file)
 library("Rwave")
 
-#precondition: ( log2(s0*w0/(2*pi)) - 1 ) * nvoice + 1.5 >= 1
-toCWT  <- function(X, tw=0, swabs=0, nvoice=12, noctave=5, s0=2, w0=2*pi,
-       spectra=FALSE, smooth=TRUE, scaled=FALSE, scalevector)
-{
-       if(missing(scalevector))
-               scalevector  <- 2^(0:(noctave * nvoice) / nvoice) * s0
-       s0log=as.integer((log2( s0*w0/(2*pi) )-1)*nvoice+1.5)
-       totnoct=noctave+as.integer(s0log/nvoice)+1
-       res <- lapply(1:nrow(X), function(n) {
-               ts <- scale(ts( X[n,] ), center=TRUE, scale=scaled)
-               totts.cwt = Rwave::cwt(ts,totnoct,nvoice,w0,plot=0)
-               ts.cwt=totts.cwt[,s0log:(s0log+noctave*nvoice)]
-               #Normalization
-               sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0)
-               smat <- matrix(rep(sqs,length(t)),nrow=length(t),byrow=TRUE)
-               ts.cwt*smat
-       })
-       if( spectra )
-               res <- lapply(res, function(l) Mod(l)^2 )
-       if( smooth  )
-               res <- lapply(res, smCWT, swabs = swabs, tw = tw, scalevector = scalevector)
-       resArray <- array(NA, c(nrow(res[[1]]), ncol(res[[1]]), length(res)))
-       for( l in 1:length(res) )
-               resArray[ , , l] <- res[[l]]
-       resArray
-}
-
-#smooth cwt result
-smCWT <- function(CWT, tw=  0, swabs= 0, nvoice= 12, noctave= 2, s0= 2, w0= 2*pi,
-       lt= 24, scalevector )
-{
-       wsp     <- Mod(CWT)
-       smwsp   <- smooth.matrix(wsp, swabs)
-       smsmwsp <- smooth.time(smwsp, tw, scalevector)
-       smsmwsp
-}
-
-#dans sowas.R (...donc on ne lisse pas à ce niveau ?)
-smooth.matrix <- function(wt,swabs)
-{
-       if (swabs != 0)
-       {
-               smwt <- t(filter(t(wt),rep(1,2*swabs+1)/(2*swabs+1)))
-       } else
-       {
-               smwt <- wt
-       }
-       smwt
-}
-
-smooth.time <- function(wt,tw,scalevector)
-{
-       smwt <- wt
-       if (tw != 0)
-       {
-               for (i in 1:length(scalevector))
-               {
-                       twi <- as.integer(scalevector[i]*tw)
-                       smwt[,i] <- filter(wt[,i],rep(1,2*twi+1)/(2*twi+1))
-               }
-       }
-       smwt
-}
-
 #Entrée : courbes synchrones, soit après étape 1 itérée, soit après chaqure étape 1
 step2 = function(conso)
 {
-       n     <- nrow(conso)
-       m <- ncol(conso)
-
-       #TODO: automatic tune of these parameters ? (for other users)
+       n <- nrow(conso)
+       delta <- ncol(conso)
+       #TODO: automatic tune of all these parameters ? (for other users)
        nvoice   <- 4
        # noctave = 2^13 = 8192 half hours ~ 180 days ; ~log2(ncol(conso))
        noctave = 13
        # 4 here represent 2^5 = 32 half-hours ~ 1 day
-       scalevector4  <- 2^(4:(noctave * nvoice) / nvoice) * 2
-       lscvect4      <- length(scalevector4)
-       lscvect <- lscvect4  # i should clean my code: werFam demands a lscvect
-
-       # observations node with CWT
-       Xcwt4   <- toCWT(conso, noctave = noctave, scalevector = scalevector4,
-               smooth = FALSE, nvoice = nvoice)
-
-       #matrix:
-       Xcwt2 <- matrix(NA_complex_, nrow= n, ncol= 2 + length((c(Xcwt4[,,1]))))
-
-       for(i in 1:n)
-               Xcwt2[i,] <- c(m, lscvect, Xcwt4[,,i] / max(Mod(Xcwt4[,,i])) )
-
-       rm(conso, Xcwt4) ; gc()
-
-       lscvect = dim(Xcwt4)[2]
+       #NOTE: default scalevector == 2^(0:(noctave * nvoice) / nvoice) * s0 (?)
+       scalevector  <- 2^(4:(noctave * nvoice) / nvoice) * 2
+       #condition: ( log2(s0*w0/(2*pi)) - 1 ) * nvoice + 1.5 >= 1
+       s0=2
+       w0=2*pi
+       scaled=FALSE
+       s0log = as.integer( (log2( s0*w0/(2*pi) ) - 1) * nvoice + 1.5 )
+       totnoct = noctave + as.integer(s0log/nvoice) + 1
+
+       # (normalized) observations node with CWT
+       Xcwt4 <- lapply(seq_len(n), function(i) {
+               ts <- scale(ts(conso[i,]), center=TRUE, scale=scaled)
+               totts.cwt = Rwave::cwt(ts,totnoct,nvoice,w0,plot=0)
+               ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)]
+               #Normalization
+               sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0)
+               sqres <- sweep(ts.cwt,MARGIN=2,sqs,'*')
+               sqres / max(Mod(sqres))
+       })
 
-       Xwer_dist    <- matrix(0.0, n, n)
-       for(i in 1:(n - 1))
+       Xwer_dist <- matrix(0., n, n)
+       fcoefs = rep(1/3, 3) #moving average on 3 values (TODO: very slow! correct?!)
+       for (i in 1:(n-1))
        {
-               mat1   <- matrix(as.vector(Xcwt2[i,])[-(1:2)], m, lscvect)
-
-               for(j in (i + 1):n)
+               for (j in (i+1):n)
                {
-                       mat2 <- matrix(as.vector(Xcwt2[j,])[-(1:2)], m, lscvect)
-                       num     <- Mod(mat1 * Conj(mat2))
-                       WX      <- Mod(mat1 * Conj(mat1))
-                       WY      <- Mod(mat2 * Conj(mat2))
-                       smsmnum <- smCWT(num, scalevector = scalevector4)
-                       smsmWX  <- smCWT(WX,  scalevector = scalevector4)
-                       smsmWY  <- smCWT(WY,  scalevector = scalevector4)
-                       wer2    <- sum(colSums(smsmnum)^2)  /
-                               sum( sum(colSums(smsmWX) * colSums(smsmWY)) )
-                       Xwer_dist[i, j] <- sqrt(m * lscvect * (1 - wer2))
-                       Xwer_dist[j, i] <- Xwer_dist[i, j]
+                       #TODO: later, compute CWT here (because not enough storage space for 32M series)
+                       #      'circular=TRUE' is wrong, should just take values on the sides; to rewrite in C
+                       num <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE)
+                       WX <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[i]])), fcoefs, circular=TRUE)
+                       WY <- filter(Mod(Xcwt4[[j]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE)
+                       wer2    <- sum(colSums(num)^2) / sum( sum(colSums(WX) * colSums(WY)) )
+                       Xwer_dist[i,j] <- sqrt(delta * ncol(Xcwt4[[1]]) * (1 - wer2))
+                       Xwer_dist[j,i] <- Xwer_dist[i,j]
                }
        }
        diag(Xwer_dist) <- numeric(n)