4 P = ${P} #première heure de prévision
5 H = ${H} #dernière heure de prévision
7 ts_data = read.csv(system.file("extdata","pm10_mesures_H_loc.csv",
9 exo_data = read.csv(system.file("extdata","meteo_extra_noNAs.csv",
11 data = getData(ts_data, exo_data)
13 indices = seq(as.Date("2015-01-01"),as.Date("2015-12-31"),"days")
15 p1 = computeForecast(data, indices, "Neighbors", "Neighbors",
16 predict_from=P, horizon=H, simtype="mix", local=FALSE)
17 p2 = computeForecast(data, indices, "Neighbors", NULL,
18 predict_from=P, horizon=H, simtype="none", local=TRUE)
19 p3 = computeForecast(data, indices, "Average", "Zero",
20 predict_from=P, horizon=H)
21 p4 = computeForecast(data, indices, "Persistence", "Zero",
22 predict_from=P, horizon=H, same_day=TRUE)
24 e1 = computeError(data, p1, P, H)
25 e2 = computeError(data, p2, P, H)
26 e3 = computeError(data, p3, P, H)
27 e4 = computeError(data, p4, P, H)
28 options(repr.plot.width=9, repr.plot.height=7)
29 plotError(list(e1, e4, e3, e2), cols=c(1,2,colors()[258],4))
31 # noir: Neighbors non-local (p1), bleu: Neighbors local (p2),
32 # vert: moyenne (p3), rouge: persistence (p4)
34 ## TODO: plot modifié, retourner jour par jour et agréger au mois
36 ## TODO: garder éventuellement ça ::
37 sum_p23 = e2$abs$indices + e3$abs$indices
38 i_np = which.min(sum_p23) #indice de jour "facile"
39 i_p = which.max(sum_p23) #indice de jour "difficile"
42 options(repr.plot.width=9, repr.plot.height=4)
45 plotPredReal(data, p1, i_np); title(paste("PredReal p1 day",i_np))
46 plotPredReal(data, p1, i_p); title(paste("PredReal p1 day",i_p))
48 plotPredReal(data, p2, i_np); title(paste("PredReal p2 day",i_np))
49 plotPredReal(data, p2, i_p); title(paste("PredReal p2 day",i_p))
51 # Bleu : prévue ; noir : réalisée (confondues jusqu'à predict_from-1)