3 #' Forecaster (abstract class, implemented by all forecasters).
5 #' A Forecaster object encapsulates parameters (which can be of various kinds, for
6 #' example "Neighbors" method stores informations about the considered neighborhood for
7 #' the current prediction task) and one main function: \code{predictSerie()}. This last
8 #' function (by default) calls \code{predictShape()} to get a forecast of a centered
9 #' serie, and then calls the "jump prediction" function if it's provided -- see "field"
10 #' section -- to adjust it based on the last observed values. The main method in derived
11 #' forecasters is \code{predictShape()}; see 'Methods' section.
13 #' @usage # Forecaster$new(pjump) #warning: predictShape() is unimplemented
15 #' @field .params List of computed parameters (if applicable).
16 #' @field .pjump Function: how to predict the jump at day interface? The arguments of
17 #' this function are -- in this order:
19 #' \item data: object output of \code{getData()},
20 #' \item today: index of the current day in data (known until predict_from-1),
21 #' \item memory: number of days to use in the past (including today),
22 #' \item predict_from: first time step to predict (in [1,24])
23 #' \item horizon: last time step to predict (in [predict_from,24]),
24 #' \item params: optimized parameters in the main method \code{predictShape()},
25 #' \item ...: additional arguments.
27 #' .pjump returns an estimation of the jump after the last observed value.
31 #' \item{\code{initialize(pjump)}}{
32 #' Initialize a Forecaster object with a jump prediction function.}
33 #' \item{\code{predictSerie(data,today,memory,predict_from,horizon,...)}}{
34 #' Predict the next curve (at index today) from predict_from to horizon (hours), using
35 #' \code{memory} days in the past.}
36 #' \item{\code{predictShape(data,today,memory,predict_from,horizon,...)}}{
37 #' Predict the shape of the next curve (at index today) from predict_from to horizon
38 #' (hours), using \code{memory} days in the past.}
39 #' \item{\code{getParameters()}}{
40 #' Return (internal) parameters.}
46 Forecaster = R6::R6Class("Forecaster",
52 initialize = function(pjump)
54 private$.pjump <- pjump
57 predictSerie = function(data, today, memory, predict_from, horizon, ...)
59 # Parameters (potentially) computed during shape prediction stage
60 predicted_shape <- self$predictShape(data,today,memory,predict_from,horizon,...)
62 if (is.na(predicted_shape))
65 predicted_delta <- private$.pjump(data, today, memory, predict_from,
66 horizon, private$.params, first_pred=predicted_shape[1], ...)
68 # Predicted shape is aligned on the end of current day + jump
69 c( data$getSerie(today)[if (predict_from>=2) 1:(predict_from-1) else c()],
70 (predicted_shape - predicted_shape[1]) + #shape with first_pred = 0
71 ifelse(predict_from>=2, #last observed value
72 data$getSerie(today)[predict_from-1], tail(data$getSerie(today-1),1)) +
73 predicted_delta ) #jump
75 predictShape = function(data, today, memory, predict_from, horizon, ...)
76 NULL #empty default implementation: to implement in inherited classes
78 getParameters = function()