1 #' @title Acquire data in a clean format
3 #' @description Take in input data frames and/or files containing raw data, and timezones, and
4 #' output a Data object, roughly corresponding to a list where each cell contains all value
5 #' for one day (see \code{?Data}). Current limitation: series (in working_tz) must start at
6 #' right after midnight (to keep in sync with exogenous vars)
8 #' @param ts_data Time-series, as a data frame (DB style: 2 columns, first is date/time,
9 #' second is value) or a CSV file
10 #' @param exo_data Exogenous variables, as a data frame or a CSV file; first comlumn is dates,
11 #' next block are measurements for the day, and final block are exogenous forecasts
12 #' @param input_tz Timezone in the input files ("GMT" or e.g. "Europe/Paris")
13 #' @param date_format How date/time are stored (e.g. year/month/day hour:minutes;
14 #' see \code{strptime})
15 #' @param working_tz Timezone to work with ("GMT" or e.g. "Europe/Paris")
16 #' @param predict_at When does the prediction take place ? Integer, in hours. Default: 0
18 #' @return An object of class Data
21 #' ts_data = read.csv(system.file("extdata","pm10_mesures_H_loc.csv",package="talweg"))
22 #' exo_data = read.csv(system.file("extdata","meteo_extra_noNAs.csv",package="talweg"))
23 #' getData(ts_data, exo_data, input_tz="Europe/Paris", working_tz="Europe/Paris", limit=150)
25 getData = function(ts_data, exo_data, input_tz="GMT", date_format="%d/%m/%Y %H:%M",
26 working_tz="GMT", predict_at=0, limit=Inf)
28 # Sanity checks (not full, but sufficient at this stage)
29 if (!is.character(input_tz) || !is.character(working_tz))
30 stop("Bad timezone (see ?timezone)")
31 input_tz = input_tz[1]
32 working_tz = working_tz[1]
33 if ( (!is.data.frame(ts_data) && !is.character(ts_data)) ||
34 (!is.data.frame(exo_data) && !is.character(exo_data)) )
35 stop("Bad time-series / exogenous input (data frame or CSV file)")
36 if (is.character(ts_data))
38 if (is.character(exo_data))
39 exo_data = exo_data[1]
40 predict_at = as.integer(predict_at)[1]
41 if (predict_at<0 || predict_at>23)
42 stop("Bad predict_at (0-23)")
43 if (!is.character(date_format))
44 stop("Bad date_format (character)")
45 date_format = date_format[1]
48 if (is.character(ts_data))
53 if (is.character(exo_data))
57 # Convert to the desired timezone (usually "GMT" or "Europe/Paris")
58 formatted_dates_POSIXlt = strptime(as.character(ts_df[,1]), date_format, tz=input_tz)
59 ts_df[,1] = format(as.POSIXct(formatted_dates_POSIXlt), tz=working_tz, usetz=TRUE)
61 line = 1 #index in PM10 file (24 lines for 1 cell)
62 nb_lines = nrow(ts_df)
63 nb_exos = ( ncol(exo_df) - 1 ) / 2
64 data = list() #new("Data")
65 i = 1 #index of a cell in data
66 while (line <= nb_lines)
73 time = c(time, ts_df[line,1])
74 serie = c(serie, ts_df[line,2])
77 if (line >= nb_lines + 1 || as.POSIXlt(ts_df[line-1,1])$hour == predict_at)
81 # NOTE: if predict_at does not cut days at midnight, exogenous vars need to be shifted
82 exo_hat = as.data.frame( exo_df[
83 ifelse(predict_at>0,max(1,i-1),i) , (1+nb_exos+1):(1+2*nb_exos) ] )
84 exo = as.data.frame( exo_df[ ifelse(predict_at>0,max(1,i-1),i) , 2:(1+nb_exos) ] )
85 level = mean(serie, na.rm=TRUE)
86 centered_serie = serie - level
87 #data$append(time, centered_serie, level, exo_hat, exo_Jm1) #too slow; TODO: use R6 class
88 data[[length(data)+1]] = list("time"=time, "serie"=centered_serie, "level"=level,
89 "exo_hat"=exo_hat, "exo"=exo)