X-Git-Url: https://git.auder.net/doc/index.css?a=blobdiff_plain;ds=sidebyside;f=old_C_code%2Fstage2%2Fsrc%2Funused%2F05_cluster2stepWER-par.r;fp=old_C_code%2Fstage2%2Fsrc%2Funused%2F05_cluster2stepWER-par.r;h=90988dcb46c3f21cedd5b10e7296c52ba3e635f5;hb=7709d507dfab9256a401f2c77ced7bc70d90fec3;hp=0000000000000000000000000000000000000000;hpb=38aef1cbef037257bf03dd1e65fbb682a32e3f2c;p=epclust.git diff --git a/old_C_code/stage2/src/unused/05_cluster2stepWER-par.r b/old_C_code/stage2/src/unused/05_cluster2stepWER-par.r new file mode 100644 index 0000000..90988dc --- /dev/null +++ b/old_C_code/stage2/src/unused/05_cluster2stepWER-par.r @@ -0,0 +1,153 @@ +## File : 05_cluster2stepWER.r +## Description : + +rm(list = ls()) + +if(Sys.info()[4] == "mojarrita"){ + setwd("~/Documents/projects/2014_EDF-Orsay-Lyon2/codes/") +} else { + setwd("~/ownCloud/projects/2014_EDF-Orsay-Lyon2/codes/") +} + +library(Rwave) # CWT +library(cluster) # pam +#library(flexclust) # kcca +source("aux.r") # auxiliary clustering functions +source("sowas-superseded.r") # auxiliary CWT functions + +## 1. Read auxiliar data files #### + +identifiants <- read.table("identifs.txt")[ ,1] +dates0 <- read.table("datesall.txt")[, 1] +dates <- as.character(dates0[grep("2009", dates0)]) +rm(dates0) + +#n <- length(identifiants) +#p <- length(dates) + +load('~/tmp/2009synchrosdf200WER') +#load('../res/2009_synchros200WER.Rdata') +synchros09 <- synchros +load('~/tmp/2010synchrosdf200WER') +synchros10 <- synchros; rm(synchros) + +conso <- lapply(synchros09, function(ll) { + nas <- which(is.na(ll)[, 1]) # some 1/1/2009 are missing + ll[nas, 1] <- rowMeans(ll[nas, 2:4]) + imput <- ll[, 4180:4181] %*% matrix(c(2/3, 1/3, 1/3, 2/3), 2) + cbind(ll[, 1:4180], imput, ll[, 4181:17518]) } ) + +n <- nrow(conso[[1]]) +delta <- ncol(conso[[1]]) +rm(synchros09) + + +## 2. Compute WER distance matrix #### + +## _.a CWT -- Filtering the lowest freqs (>6m) #### +nvoice <- 4 +# noctave4 = 2^13 = 8192 half hours ~ 180 days +noctave4 <- adjust.noctave(N = delta, dt = 1, s0 = 2, + tw = 0, noctave = 13) +# 4 here represent 2^5 = 32 half-hours ~ 1 day +scalevector4 <- 2^(4:(noctave4 * nvoice) / nvoice) * 2 +lscvect4 <- length(scalevector4) +lscvect <- lscvect4 # i should clean my code: werFam demands a lscvect + +Xcwt4 <- lapply(conso, function(ll) + toCWT(ll, noctave = noctave4, dt = 1, + scalevector = scalevector4, + lt = delta, smooth = FALSE, + nvoice = nvoice) # observations node with CWT + ) + +rm(conso) + +Xcwt4 <- lapply(conso, function(ll) { + aux <- toCWT(ll, noctave = noctave4, dt = 1, + scalevector = scalevector4, + lt = delta, smooth = FALSE, + nvoice = nvoice) # observations node with CWT + res <- matrix(NA_complex_, nrow = n, ncol= 2 + length((c(aux[,,1])))) + for(i in 1:n) + res[i, ] <- c(delta, lscvect, res[,,i] / max(Mod(res[,,i])) ) + res }) + +rm(conso) + + +#Xcwt2 <- matrix(0.0, nrow= n, ncol= 2 + delta * lscvect) +#Xcwt2 <- matrix(NA_complex_, nrow= n, ncol= 2 + length((c(Xcwt4[,,1])))) + +#for(i in 1:n) +# Xcwt2[i,] <- c(delta, lscvect, Xcwt4[,,i] / max(Mod(Xcwt4[,,i])) ) + +#rm(conso, Xcwt4); gc() + +## _.b WER^2 distances ######## +#Xwer_dist <- matrix(0.0, n, n) +#for(i in 1:(n - 1)){ +# mat1 <- vect2mat(Xcwt2[i,]) +# for(j in (i + 1):n){ +# mat2 <- vect2mat(Xcwt2[j,]) +# num <- Mod(mat1 * Conj(mat2)) +# WX <- Mod(mat1 * Conj(mat1)) +# WY <- Mod(mat2 * Conj(mat2)) +# smsmnum <- smCWT(num, scalevector = scalevector4) +# smsmWX <- smCWT(WX, scalevector = scalevector4) +# smsmWY <- smCWT(WY, scalevector = scalevector4) +# wer2 <- sum(colSums(smsmnum)^2) / +# sum( sum(colSums(smsmWX) * colSums(smsmWY)) ) +# Xwer_dist[i, j] <- sqrt(delta * lscvect * (1 - wer2)) +# Xwer_dist[j, i] <- Xwer_dist[i, j] +# } +# } +# diag(Xwer_dist) <- numeric(n) +# +# save(Xwer_dist, file = "../res/2009_synchros200WER.Rdata") + +load("../res/2009_synchros200WER.Rdata") + + +## 3. Cluster using WER distance matrix #### + +#hc <- hclust(as.dist(Xwer_dist), method = "ward.D") +#plot(hc) +# +# #clust <- cutree(hc, 2) +# +for(K in 2:30){ + #K <- 3 + #pamfit <- pam(tdata[-201, ci$selectv], k = K) + pamfit <- pam(as.dist(Xwer_dist), k = K, diss = TRUE) + + #table(pamfit$clustering) + + SC <- matrix(0, ncol = p, nrow = K) + + clustfactor <- pamfit$clustering +# for(k in 1:K){ +# clustk <- which(clustfactor == k) +# if(length(clustk) > 0) { +# if(length(clustk) > 1) { +# SCk <- colSums(synchros09[which(clustfactor == k), ]) +# } else { +# SCk <- synchros09[which(clustfactor == k), ] +# } +# SC[k, ] <- SC[k, ] + SCk +# rm(SCk) +# } +#} + +#write.table(clustfactor, file = paste0("~/tmp/clustfactorRC", K, ".txt")) +#write.table(clustfactor, file = "~/tmp/clustfactor3.txt") +write.table(clustfactor, file = paste0("~/tmp/clustfactorWER", K, ".txt")) +} +# +# # Plots +# layout(1) +# matplot(t(SC)[48*10 + 1:(48*30), ], type = 'l', ylab = '',col = 1:3, lty = 1) +# matplot(t(SC)[48*100 + 1:(48*30), ], type = 'l', ylab = '', col = 1:3, lty = 1) +# +# +#