Commit | Line | Data |
---|---|---|
3d69ff21 BA |
1 | #' @title plot measured / predicted |
2 | #' | |
3 | #' @description Plot measured curve (in black) and predicted curve (in red) | |
4 | #' | |
5 | #' @param data Object return by \code{getData} | |
6 | #' @param pred Object as returned by \code{getForecast} | |
7 | #' @param index Index in forecasts | |
8 | #' | |
9 | #' @export | |
10 | plotPredReal <- function(data, pred, index) | |
11 | { | |
12 | horizon = length(pred$getSerie(1)) | |
13 | par(mar=c(4.7,5,1,1), cex.axis=2, cex.lab=2, lwd=2) | |
14 | measure = data$getSerie(pred$getIndexInData(index)+1)[1:horizon] | |
15 | yrange = range( pred$getSerie(index), measure ) | |
16 | plot(measure, type="l", ylim=yrange, lwd=3) | |
17 | par(new=TRUE) | |
18 | plot(pred$getSerie(index), type="l", col=2, ylim=yrange, lwd=3) | |
19 | } | |
20 | ||
21 | #' @title Plot filaments | |
22 | #' | |
23 | #' @description Plot similar days in the past + "past tomorrow", as black as distances are small | |
24 | #' | |
25 | #' @param data Object as returned by \code{getData} | |
26 | #' @param index Index in data | |
27 | #' @param limit Number of neighbors to consider | |
28 | #' | |
29 | #' @export | |
30 | plotFilaments <- function(data, index, limit=60) | |
31 | { | |
32 | index = dateIndexToInteger(index, data) | |
33 | ref_serie = data$getCenteredSerie(index) | |
34 | if (any(is.na(ref_serie))) | |
35 | stop("plotFilaments requires a serie without NAs") | |
36 | L = length(ref_serie) | |
37 | first_day = ifelse(length(data$getCenteredSerie(1)<L), 2, 1) | |
38 | distances = sapply(first_day:(index-1), function(i) { | |
39 | sqrt( sum( (ref_serie - data$getCenteredSerie(i))^2 ) / L ) | |
40 | }) | |
41 | # HACK to suppress NA effect while keeping indexation | |
42 | distances[is.na(distances)] = max(distances,na.rm=TRUE) + 1 | |
43 | indices = sort(distances, index.return=TRUE)$ix[1:min(limit,index-first_day)] | |
44 | yrange = range( ref_serie, sapply( indices, function(i) { | |
45 | index = i - first_day + 1 | |
46 | serie = c(data$getCenteredSerie(index), data$getCenteredSerie(index+1)) | |
47 | if (!all(is.na(serie))) | |
48 | return ( range(serie, na.rm=TRUE) ) | |
49 | return (0) | |
50 | }) ) | |
51 | grays = gray.colors(20, 0.1, 0.9) #TODO: 20 == magic number | |
52 | colors = c( | |
53 | grays[ floor( 20.5 * distances[indices] / (1+max(distances[indices])) ) ], "#FF0000") | |
54 | par(mar=c(4.7,5,1,1), cex.axis=2, cex.lab=2, lwd=2) | |
55 | for (i in seq_len(length(indices)+1)) | |
56 | { | |
57 | ind = ifelse(i<=length(indices), indices[i] - first_day + 1, index) | |
58 | plot(c(data$getCenteredSerie(ind),data$getCenteredSerie(ind+1)), | |
59 | ylim=yrange, type="l", col=colors[i], | |
60 | xlab=ifelse(i==1,"Temps (en heures)",""), ylab=ifelse(i==1,"PM10 centré","")) | |
61 | if (i <= length(indices)) | |
62 | par(new=TRUE) | |
63 | } | |
64 | } | |
65 | ||
66 | #' @title Plot similarities | |
67 | #' | |
68 | #' @description Plot histogram of similarities (weights) | |
69 | #' | |
70 | #' @param pred Object as returned by \code{getForecast} | |
71 | #' @param index Index in forecasts (not in data) | |
72 | #' | |
73 | #' @export | |
74 | plotSimils <- function(pred, index) | |
75 | { | |
76 | weights = pred$getParams(index)$weights | |
77 | if (is.null(weights)) | |
78 | stop("plotSimils only works on 'Neighbors' forecasts") | |
79 | par(mar=c(4.7,5,1,1)) | |
80 | hist(pred$getParams(index)$weights, nclass=20, xlab="Weight", ylab="Frequency") | |
81 | } | |
82 | ||
83 | #' @title Plot error | |
84 | #' | |
85 | #' @description Draw error graphs, potentially from several runs of \code{getForecast} | |
86 | #' | |
87 | #' @param err Error as returned by \code{getError} | |
88 | #' | |
89 | #' @seealso \code{\link{plotPredReal}}, \code{\link{plotFilaments}}, \code{\link{plotSimils}} | |
90 | #' \code{\link{plotFbox}} | |
91 | #' | |
92 | #' @export | |
93 | plotError <- function(err) | |
94 | { | |
95 | par(mfrow=c(2,2), mar=c(4.7,5,1,1), cex.axis=2, cex.lab=2, lwd=2) | |
96 | L = length(err) | |
97 | yrange = range( sapply(1:L, function(index) ( err[[index]]$abs$day ) ), na.rm=TRUE ) | |
98 | for (i in seq_len(L)) | |
99 | { | |
100 | plot(err[[i]]$abs$day, type="l", xlab=ifelse(i==1,"Temps (heures)",""), | |
101 | ylab=ifelse(i==1,"Moyenne |y - y_hat|",""), ylim=yrange, col=i) | |
102 | if (i < L) | |
103 | par(new=TRUE) | |
104 | } | |
105 | yrange = range( sapply(1:L, function(index) ( err[[index]]$abs$indices ) ), na.rm=TRUE ) | |
106 | for (i in seq_len(L)) | |
107 | { | |
108 | plot(err[[i]]$abs$indices, type="l", xlab=ifelse(i==1,"Temps (jours)",""), | |
109 | ylab=ifelse(i==1,"Moyenne |y - y_hat|",""), ylim=yrange, col=i) | |
110 | if (i < L) | |
111 | par(new=TRUE) | |
112 | } | |
113 | yrange = range( sapply(1:L, function(index) ( err[[index]]$MAPE$day ) ), na.rm=TRUE ) | |
114 | for (i in seq_len(L)) | |
115 | { | |
116 | plot(err[[i]]$MAPE$day, type="l", xlab=ifelse(i==1,"Temps (heures)",""), | |
117 | ylab=ifelse(i==1,"MAPE moyen",""), ylim=yrange, col=i) | |
118 | if (i < L) | |
119 | par(new=TRUE) | |
120 | } | |
121 | yrange = range( sapply(1:L, function(index) ( err[[index]]$MAPE$indices ) ), na.rm=TRUE ) | |
122 | for (i in seq_len(L)) | |
123 | { | |
124 | plot(err[[i]]$MAPE$indices, type="l", xlab=ifelse(i==1,"Temps (jours)",""), | |
125 | ylab=ifelse(i==1,"MAPE moyen",""), ylim=yrange, col=i) | |
126 | if (i < L) | |
127 | par(new=TRUE) | |
128 | } | |
129 | } | |
130 | ||
131 | #' @title Functional boxplot | |
132 | #' | |
133 | #' @description Draw the functional boxplot on the left, and bivariate plot on the right | |
134 | #' | |
135 | #' @param data Object return by \code{getData} | |
136 | #' @param fiter Optional filter: return TRUE on indices to process | |
137 | #' | |
138 | #' @export | |
139 | plotFbox <- function(data, filter=function(index) (TRUE)) | |
140 | { | |
141 | if (!requireNamespace("rainbow", quietly=TRUE)) | |
142 | stop("Functional boxplot requires the rainbow package") | |
143 | ||
144 | start_index = 1 | |
145 | end_index = data$getSize() | |
146 | if (length(data$getCenteredSerie(1)) < length(data$getCenteredSerie(2))) | |
147 | { | |
148 | # Shifted start (7am, or 1pm, or...) | |
149 | start_index = 2 | |
150 | end_index = data$getSize() - 1 | |
151 | } | |
152 | ||
153 | series_matrix = sapply(start_index:end_index, function(index) { | |
154 | as.matrix(data$getSerie(index)) | |
155 | }) | |
156 | # Remove NAs. + filter TODO: merge with previous step: only one pass required... | |
157 | nas_indices = seq_len(ncol(series_matrix))[ sapply( 1:ncol(series_matrix), | |
158 | function(index) ( !filter(index) || any(is.na(series_matrix[,index])) ) ) ] | |
159 | series_matrix = series_matrix[,-nas_indices] | |
160 | ||
161 | series_fds = rainbow::fds(seq_len(nrow(series_matrix)), series_matrix) | |
162 | par(mfrow=c(1,2), mar=c(4.7,5,1,1), cex.axis=2, cex.lab=2) | |
163 | rainbow::fboxplot(series_fds, "functional", "hdr", xlab="Temps (heures)", ylab="PM10", | |
164 | plotlegend=FALSE, lwd=2) | |
165 | rainbow::fboxplot(series_fds, "bivariate", "hdr", plotlegend=FALSE) | |
166 | } |