Commit | Line | Data |
---|---|---|
d1531659 | 1 | #' Generate a sample of (X,Y) of size n |
f2a91208 | 2 | #' @param covX covariance for covariates (of size p*p*K) |
3 | #' @param covY covariance for the response vector (of size m*m*K) | |
d1531659 | 4 | #' @param pi proportion for each cluster |
5 | #' @param beta regression matrix | |
6 | #' @param n sample size | |
f2a91208 | 7 | #' |
d1531659 | 8 | #' @return list with X and Y |
9 | #' @export | |
10 | #----------------------------------------------------------------------- | |
39046da6 BA |
11 | generateIO = function(covX, covY, pi, beta, n) |
12 | { | |
f2a91208 | 13 | p = dim(covX)[1] |
d1531659 | 14 | |
f2a91208 | 15 | m = dim(covY)[1] |
16 | k = dim(covY)[3] | |
d1531659 | 17 | |
18 | Y = matrix(0,n,m) | |
19 | BX = array(0, dim=c(n,m,k)) | |
20 | ||
21 | require(MASS) #simulate from a multivariate normal distribution | |
22 | for (i in 1:n) | |
23 | { | |
24 | for (r in 1:k) | |
25 | { | |
26 | BXir = rep(0,m) | |
27 | for (mm in 1:m) | |
28 | Bxir[[mm]] = X[i,] %*% beta[,mm,r] | |
29 | Y[i,] = Y[i,] + pi[r] * mvrnorm(1,BXir, covY[,,r]) | |
30 | } | |
31 | } | |
32 | ||
33 | return (list(X=X,Y=Y)) | |
39046da6 | 34 | } |