1 #' Sample dataset to run the algorithm
3 #' Original data from AirNormand was removed, and replaced with the following:
5 #' \item{daily_exogenous.csv}{a CSV file containing dates in the first column, and then n columns for measurements, and finally n columns for predictions (same day)}
6 #' \item{intraday_measures.csv}{a CSV file with two columns: the first with datetimes, and the second with measurements}
9 #' Here is the code that generated these files: (not any physical sense)\cr
10 #' #dts = timestamps from 1970-01-01 01:00 to 1972-01-01 00:00\cr
11 #' dts = seq(0,17519*3600,3600)\cr
12 #' intraday = data.frame(\cr
13 #' Time=as.POSIXct(dts,tz="GMT",origin="1970-01-01 01:00"),\cr
14 #' Measure=rgamma(length(dts),10,.7) )\cr
15 #' dates = seq(as.Date("1970-01-01"), as.Date("1972-01-01"), "day")\cr
16 #' m1 = cos(seq_along(dates))\cr
17 #' m2 = log(seq_along(dates)+1)\cr
18 #' daily = data.frame(\cr
22 #' m1_pred=m1+rnorm(length(m1),sd=.1),\cr
23 #' m2_pred=m2+rnorm(length(m2),sd=.1) )\cr
24 #' write.csv(intraday, file="intraday_measures.csv", row.names=F)\cr
25 #' write.csv(daily, file="daily_exogenous.csv", row.names=F)
29 #' @usage data(talweg::sample)
30 #' @format Two dataframes: intraday with 17519 rows and 2 columns (Time,Measure), hourly;
31 #' and daily with 731 rows, 5 columns (Date,m1,m2,m1_pred,m2_pred)