intermediate: R6, too slow
[talweg.git] / pkg / R / plot.R
CommitLineData
e030a6e3
BA
1#' @title plot curves
2#'
3#' @description Plot a range of curves in data
4#'
5#' @param data Object of class Data
6#' @param indices Range of indices (integers or dates)
7#'
8#' @export
1e20780e 9plotCurves <- function(data, indices=seq_len(data$getSize()))
e030a6e3 10{
841b7f5a 11 yrange = quantile( sapply( indices, function(i) {
e030a6e3
BA
12 serie = c(data$getCenteredSerie(i))
13 if (!all(is.na(serie)))
14 range(serie, na.rm=TRUE)
15 c()
841b7f5a 16 }), probs=c(0.05,0.95) )
e030a6e3
BA
17 par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
18 for (i in seq_along(indices))
19 {
20 plot(data$getSerie(indices[i]), type="l", ylim=yrange,
21 xlab=ifelse(i==1,"Temps (en heures)",""), ylab=ifelse(i==1,"PM10",""))
1e20780e 22 if (i < length(indices))
e030a6e3
BA
23 par(new=TRUE)
24 }
25}
26
3d69ff21
BA
27#' @title plot measured / predicted
28#'
29#' @description Plot measured curve (in black) and predicted curve (in red)
30#'
31#' @param data Object return by \code{getData}
99f83c9a 32#' @param pred Object as returned by \code{computeForecast}
3d69ff21
BA
33#' @param index Index in forecasts
34#'
35#' @export
36plotPredReal <- function(data, pred, index)
37{
38 horizon = length(pred$getSerie(1))
3d69ff21
BA
39 measure = data$getSerie(pred$getIndexInData(index)+1)[1:horizon]
40 yrange = range( pred$getSerie(index), measure )
1e20780e 41 par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=3)
4e95ec8f 42 plot(measure, type="l", ylim=yrange, xlab="Temps (en heures)", ylab="PM10")
3d69ff21 43 par(new=TRUE)
4e95ec8f 44 plot(pred$getSerie(index), type="l", col="#0000FF", ylim=yrange, xlab="", ylab="")
3d69ff21
BA
45}
46
fa8078f9 47#' @title Compute filaments
3d69ff21 48#'
fa8078f9 49#' @description Get similar days in the past + "past tomorrow", as black as distances are small
3d69ff21
BA
50#'
51#' @param data Object as returned by \code{getData}
52#' @param index Index in data
53#' @param limit Number of neighbors to consider
fa8078f9 54#' @param plot Should the result be plotted?
3d69ff21
BA
55#'
56#' @export
fa8078f9 57computeFilaments <- function(data, index, limit=60, plot=TRUE)
3d69ff21
BA
58{
59 index = dateIndexToInteger(index, data)
60 ref_serie = data$getCenteredSerie(index)
61 if (any(is.na(ref_serie)))
fa8078f9 62 stop("computeFilaments requires a serie without NAs")
3d69ff21 63 L = length(ref_serie)
1e20780e 64
16b1c049 65 # Determine indices of no-NAs days followed by no-NAs tomorrows
25b75559
BA
66 fdays = c()
67 for (i in 1:(index-1))
16b1c049
BA
68 {
69 if ( !any(is.na(data$getSerie(i)) | is.na(data$getSerie(i+1))) )
25b75559 70 fdays = c(fdays, i)
16b1c049 71 }
1e20780e 72
25b75559 73 distances = sapply(fdays, function(i) {
16b1c049
BA
74 sqrt( sum( (ref_serie - data$getCenteredSerie(i))^2 ) / L )
75 })
1e20780e 76 indices = sort(distances, index.return=TRUE)$ix[1:min(limit,length(distances))]
841b7f5a 77 yrange = quantile( c(ref_serie, sapply( indices, function(i) {
25b75559 78 serie = c(data$getCenteredSerie(fdays[i]), data$getCenteredSerie(fdays[i]+1))
3d69ff21 79 if (!all(is.na(serie)))
e5aa669a 80 return (range(serie, na.rm=TRUE))
e030a6e3 81 c()
1e20780e 82 }) ), probs=c(0.05,0.95) )
3d69ff21 83 grays = gray.colors(20, 0.1, 0.9) #TODO: 20 == magic number
16b1c049
BA
84 min_dist = min(distances[indices])
85 max_dist = max(distances[indices])
86 color_values = floor( 19.5 * (distances[indices]-min_dist) / (max_dist-min_dist) ) + 1
87 plot_order = sort(color_values, index.return=TRUE, decreasing=TRUE)$ix
fa8078f9
BA
88 colors = c(grays[ color_values[plot_order] ], "#FF0000")
89 if (plot)
3d69ff21 90 {
fa8078f9 91 par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=2)
16b1c049 92 for ( i in seq_len(length(indices)+1) )
fa8078f9 93 {
25b75559 94 ii = ifelse(i<=length(indices), fdays[ indices[plot_order[i]] ], index)
16b1c049 95 plot(c(data$getCenteredSerie(ii),data$getCenteredSerie(ii+1)),
fa8078f9
BA
96 ylim=yrange, type="l", col=colors[i],
97 xlab=ifelse(i==1,"Temps (en heures)",""), ylab=ifelse(i==1,"PM10 centré",""))
98 if (i <= length(indices))
99 par(new=TRUE)
100 }
16b1c049 101 abline(v=24, lty=2, col=colors()[56])
3d69ff21 102 }
25b75559 103 list("indices"=c(fdays[ indices[plot_order] ],index), "colors"=colors)
3d69ff21
BA
104}
105
106#' @title Plot similarities
107#'
108#' @description Plot histogram of similarities (weights)
109#'
99f83c9a 110#' @param pred Object as returned by \code{computeForecast}
3d69ff21
BA
111#' @param index Index in forecasts (not in data)
112#'
113#' @export
114plotSimils <- function(pred, index)
115{
116 weights = pred$getParams(index)$weights
117 if (is.null(weights))
118 stop("plotSimils only works on 'Neighbors' forecasts")
4e95ec8f
BA
119 par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
120 hist(pred$getParams(index)$weights, nclass=20, xlab="Poids", ylab="Effectif")
3d69ff21
BA
121}
122
123#' @title Plot error
124#'
99f83c9a 125#' @description Draw error graphs, potentially from several runs of \code{computeForecast}
3d69ff21 126#'
99f83c9a 127#' @param err Error as returned by \code{computeError}
09cf9c19 128#' @param cols Colors for each error (default: 1,2,3,...)
3d69ff21
BA
129#'
130#' @seealso \code{\link{plotPredReal}}, \code{\link{plotFilaments}}, \code{\link{plotSimils}}
131#' \code{\link{plotFbox}}
132#'
133#' @export
09cf9c19 134plotError <- function(err, cols=seq_along(err))
3d69ff21 135{
09cf9c19
BA
136 if (!is.null(err$abs))
137 err = list(err)
4e95ec8f 138 par(mfrow=c(2,2), mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=2)
3d69ff21
BA
139 L = length(err)
140 yrange = range( sapply(1:L, function(index) ( err[[index]]$abs$day ) ), na.rm=TRUE )
141 for (i in seq_len(L))
142 {
143 plot(err[[i]]$abs$day, type="l", xlab=ifelse(i==1,"Temps (heures)",""),
09cf9c19 144 ylab=ifelse(i==1,"Moyenne |y - y_hat|",""), ylim=yrange, col=cols[i])
3d69ff21
BA
145 if (i < L)
146 par(new=TRUE)
147 }
148 yrange = range( sapply(1:L, function(index) ( err[[index]]$abs$indices ) ), na.rm=TRUE )
149 for (i in seq_len(L))
150 {
151 plot(err[[i]]$abs$indices, type="l", xlab=ifelse(i==1,"Temps (jours)",""),
09cf9c19 152 ylab=ifelse(i==1,"Moyenne |y - y_hat|",""), ylim=yrange, col=cols[i])
3d69ff21
BA
153 if (i < L)
154 par(new=TRUE)
155 }
156 yrange = range( sapply(1:L, function(index) ( err[[index]]$MAPE$day ) ), na.rm=TRUE )
157 for (i in seq_len(L))
158 {
159 plot(err[[i]]$MAPE$day, type="l", xlab=ifelse(i==1,"Temps (heures)",""),
09cf9c19 160 ylab=ifelse(i==1,"MAPE moyen",""), ylim=yrange, col=cols[i])
3d69ff21
BA
161 if (i < L)
162 par(new=TRUE)
163 }
164 yrange = range( sapply(1:L, function(index) ( err[[index]]$MAPE$indices ) ), na.rm=TRUE )
165 for (i in seq_len(L))
166 {
167 plot(err[[i]]$MAPE$indices, type="l", xlab=ifelse(i==1,"Temps (jours)",""),
09cf9c19 168 ylab=ifelse(i==1,"MAPE moyen",""), ylim=yrange, col=cols[i])
3d69ff21
BA
169 if (i < L)
170 par(new=TRUE)
171 }
172}
173
174#' @title Functional boxplot
175#'
176#' @description Draw the functional boxplot on the left, and bivariate plot on the right
177#'
178#' @param data Object return by \code{getData}
179#' @param fiter Optional filter: return TRUE on indices to process
fa8078f9 180#' @param plot_bivariate Should the bivariate plot appear?
3d69ff21
BA
181#'
182#' @export
fa8078f9 183plotFbox <- function(data, filter=function(index) TRUE, plot_bivariate=TRUE)
3d69ff21
BA
184{
185 if (!requireNamespace("rainbow", quietly=TRUE))
186 stop("Functional boxplot requires the rainbow package")
187
99f83c9a 188 L = length(data$getCenteredSerie(2))
25b75559 189 series_matrix = sapply(1:data$getSize(), function(index) {
99f83c9a
BA
190 if (filter(index))
191 as.matrix(data$getSerie(index))
192 else
193 rep(NA,L)
3d69ff21 194 })
99f83c9a
BA
195 # TODO: merge with previous step: only one pass should be required
196 no_NAs_indices = sapply( 1:ncol(series_matrix), function(i) all(!is.na(series_matrix[,i])) )
197 series_matrix = series_matrix[,no_NAs_indices]
3d69ff21
BA
198
199 series_fds = rainbow::fds(seq_len(nrow(series_matrix)), series_matrix)
fa8078f9
BA
200 if (plot_bivariate)
201 par(mfrow=c(1,2))
202 par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
3d69ff21
BA
203 rainbow::fboxplot(series_fds, "functional", "hdr", xlab="Temps (heures)", ylab="PM10",
204 plotlegend=FALSE, lwd=2)
fa8078f9
BA
205 if (plot_bivariate)
206 rainbow::fboxplot(series_fds, "bivariate", "hdr", plotlegend=FALSE)
207}
208
209#' @title Functional boxplot on filaments
210#'
211#' @description Draw the functional boxplot on filaments obtained by \code{computeFilaments}
212#'
213#' @param data Object return by \code{getData}
214#' @param indices Indices as output by \code{computeFilaments}
215#'
216#' @export
217plotFilamentsBox = function(data, indices, ...)
218{
219 past_neighbs_indices = head(indices,-1)
220 plotFbox(data, function(i) i %in% past_neighbs_indices, plot_bivariate=FALSE)
221 par(new=TRUE)
222 # "Magic" found at http://stackoverflow.com/questions/13842560/get-xlim-from-a-plot-in-r
223 usr <- par("usr")
224 yr <- (usr[4] - usr[3]) / 27
225 plot(data$getSerie(tail(indices,1)), type="l", lwd=2, lty=2,
226 ylim=c(usr[3] + yr, usr[4] - yr), xlab="", ylab="")
3d69ff21 227}
16b1c049
BA
228
229#' @title Plot relative conditional variability / absolute variability
230#'
231#' @description Draw the relative conditional variability / absolute variability based on on
232#' filaments obtained by \code{computeFilaments}
233#'
234#' @param data Object return by \code{getData}
235#' @param indices Indices as output by \code{computeFilaments}
236#'
237#' @export
238plotRelativeVariability = function(data, indices, ...)
239{
240 #plot left / right separated by vertical line brown dotted
241 #median of 3 runs for random length(indices) series
242 ref_series = t( sapply(indices, function(i) {
243 c( data$getSerie(i), data$getSerie(i+1) )
244 }) )
245 ref_var = apply(ref_series, 2, sd)
246
247 # Determine indices of no-NAs days followed by no-NAs tomorrows
25b75559
BA
248 fdays = c()
249 for (i in 1:(tail(indices,1)-1))
16b1c049
BA
250 {
251 if ( !any(is.na(data$getSerie(i)) | is.na(data$getSerie(i+1))) )
25b75559 252 fdays = c(fdays, i)
16b1c049
BA
253 }
254
255 # TODO: 3 == magic number
256 random_var = matrix(nrow=3, ncol=48)
257 for (mc in seq_len(nrow(random_var)))
258 {
25b75559 259 random_indices = sample(fdays, length(indices))
16b1c049
BA
260 random_series = t( sapply(random_indices, function(i) {
261 c( data$getSerie(i), data$getSerie(i+1) )
262 }) )
263 random_var[mc,] = apply(random_series, 2, sd)
264 }
265 random_var = apply(random_var, 2, median)
266
267 yrange = range(ref_var, random_var)
268 par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
269 plot(ref_var, type="l", col=1, lwd=3, ylim=yrange, xlab="Temps (heures)", ylab="Écart-type")
270 par(new=TRUE)
271 plot(random_var, type="l", col=2, lwd=3, ylim=yrange, xlab="", ylab="")
272 abline(v=24, lty=2, col=colors()[56])
273}