Commit | Line | Data |
---|---|---|
102bcfda | 1 | #' getData |
3d69ff21 | 2 | #' |
102bcfda BA |
3 | #' Acquire data as a Data object; see ?Data. |
4 | #' | |
5 | #' Since series are given in columns (database format), this function builds series one | |
6 | #' by one and incrementally grows a Data object which is finally returned. | |
3d69ff21 BA |
7 | #' |
8 | #' @param ts_data Time-series, as a data frame (DB style: 2 columns, first is date/time, | |
102bcfda BA |
9 | #' second is value) or a CSV file. |
10 | #' @param exo_data Exogenous variables, as a data frame or a CSV file; first column is | |
72b9c501 | 11 | #' dates, next block are measurements for the day, and final block are exogenous |
102bcfda | 12 | #' forecasts (for the same day). |
3d69ff21 BA |
13 | #' @param input_tz Timezone in the input files ("GMT" or e.g. "Europe/Paris") |
14 | #' @param date_format How date/time are stored (e.g. year/month/day hour:minutes; | |
102bcfda | 15 | #' see ?strptime) |
3d69ff21 | 16 | #' @param working_tz Timezone to work with ("GMT" or e.g. "Europe/Paris") |
102bcfda | 17 | #' @param predict_at When does the prediction take place? Integer, in hours. Default: 0 |
f17665c7 | 18 | #' @param limit Number of days to extract (default: Inf, for "all") |
3d69ff21 | 19 | #' |
a66a84b5 | 20 | #' @return An object of class Data |
3d69ff21 | 21 | #' |
44a9990b BA |
22 | #' @examples |
23 | #' ts_data = read.csv(system.file("extdata","pm10_mesures_H_loc.csv",package="talweg")) | |
24 | #' exo_data = read.csv(system.file("extdata","meteo_extra_noNAs.csv",package="talweg")) | |
25b75559 | 25 | #' data = getData(ts_data, exo_data, limit=120) |
3d69ff21 | 26 | #' @export |
1e20780e BA |
27 | getData = function(ts_data, exo_data, input_tz="GMT", date_format="%d/%m/%Y %H:%M", |
28 | working_tz="GMT", predict_at=0, limit=Inf) | |
3d69ff21 BA |
29 | { |
30 | # Sanity checks (not full, but sufficient at this stage) | |
31 | if (!is.character(input_tz) || !is.character(working_tz)) | |
32 | stop("Bad timezone (see ?timezone)") | |
33 | input_tz = input_tz[1] | |
34 | working_tz = working_tz[1] | |
6d97bfec BA |
35 | if ( (!is.data.frame(ts_data) && !is.character(ts_data)) || |
36 | (!is.data.frame(exo_data) && !is.character(exo_data)) ) | |
613a986f | 37 | stop("Bad time-series / exogenous input (data frame or CSV file)") |
3d69ff21 BA |
38 | if (is.character(ts_data)) |
39 | ts_data = ts_data[1] | |
6d97bfec BA |
40 | if (is.character(exo_data)) |
41 | exo_data = exo_data[1] | |
09cf9c19 BA |
42 | predict_at = as.integer(predict_at)[1] |
43 | if (predict_at<0 || predict_at>23) | |
44 | stop("Bad predict_at (0-23)") | |
3d69ff21 BA |
45 | if (!is.character(date_format)) |
46 | stop("Bad date_format (character)") | |
47 | date_format = date_format[1] | |
48 | ||
49 | ts_df = | |
613a986f BA |
50 | if (is.character(ts_data)) |
51 | read.csv(ts_data) | |
52 | else | |
3d69ff21 | 53 | ts_data |
7f90df63 BA |
54 | # Convert to the desired timezone (usually "GMT" or "Europe/Paris") |
55 | formatted_dates_POSIXlt = strptime(as.character(ts_df[,1]), date_format, tz=input_tz) | |
72b9c501 BA |
56 | ts_df[,1] = format( |
57 | as.POSIXct(formatted_dates_POSIXlt, tz=input_tz), tz=working_tz, usetz=TRUE) | |
7f90df63 | 58 | |
3d69ff21 | 59 | exo_df = |
613a986f | 60 | if (is.character(exo_data)) |
3d69ff21 | 61 | read.csv(exo_data) |
613a986f | 62 | else |
3d69ff21 | 63 | exo_data |
7f90df63 | 64 | # Times in exogenous variables file are ignored: no conversions required |
3d69ff21 | 65 | |
3d69ff21 BA |
66 | line = 1 #index in PM10 file (24 lines for 1 cell) |
67 | nb_lines = nrow(ts_df) | |
68 | nb_exos = ( ncol(exo_df) - 1 ) / 2 | |
a66a84b5 | 69 | data = Data$new() |
3d69ff21 BA |
70 | i = 1 #index of a cell in data |
71 | while (line <= nb_lines) | |
72 | { | |
73 | time = c() | |
74 | serie = c() | |
09cf9c19 | 75 | repeat |
3d69ff21 | 76 | { |
09cf9c19 BA |
77 | { |
78 | time = c(time, ts_df[line,1]) | |
79 | serie = c(serie, ts_df[line,2]) | |
80 | line = line + 1 | |
81 | }; | |
72b9c501 BA |
82 | if (line >= nb_lines + 1 |
83 | || as.POSIXlt(ts_df[line-1,1],tz=working_tz)$hour == predict_at) | |
84 | { | |
09cf9c19 | 85 | break |
72b9c501 | 86 | } |
09cf9c19 | 87 | } |
3d69ff21 | 88 | |
f17665c7 | 89 | exo = as.data.frame( exo_df[i,2:(1+nb_exos)] ) |
4f5204f0 BA |
90 | exo_hat = |
91 | if (i < nrow(exo_df)) | |
92 | as.data.frame( exo_df[i+1,(1+nb_exos+1):(1+2*nb_exos)] ) | |
93 | else | |
94 | NA #exogenous prediction for next day are useless on last day | |
c1be9898 | 95 | data$append(time, serie, exo, exo_hat) |
1e20780e BA |
96 | if (i >= limit) |
97 | break | |
98 | i = i + 1 | |
3d69ff21 | 99 | } |
a66a84b5 BA |
100 | if (length(data$getCenteredSerie(1)) < length(data$getCenteredSerie(2))) |
101 | data$removeFirst() | |
102 | if (length(data$getCenteredSerie(data$getSize())) | |
103 | < length(data$getCenteredSerie(data$getSize()-1))) | |
f17665c7 | 104 | { |
a66a84b5 | 105 | data$removeLast() |
f17665c7 | 106 | } |
f17665c7 | 107 | data |
3d69ff21 | 108 | } |