From: Benjamin Auder <benjamin.auder@somewhere>
Date: Sat, 11 Mar 2017 15:57:48 +0000 (+0100)
Subject: add comments, fix some things. TODO: comment tests, finish computeWerDists, test it
X-Git-Url: https://git.auder.net/doc/current/%7B%7B%20path%28%27mixstore_static_policy%27%29%20%7D%7D?a=commitdiff_plain;h=d9bb53c5e1392018bf67f92140edb10137f3423c;p=epclust.git

add comments, fix some things. TODO: comment tests, finish computeWerDists, test it
---

diff --git a/epclust/R/clustering.R b/epclust/R/clustering.R
index a431ba8..2ce4267 100644
--- a/epclust/R/clustering.R
+++ b/epclust/R/clustering.R
@@ -33,10 +33,12 @@ clusteringTask1 = function(indices, getContribs, K1, algoClust1, nb_items_clust1
 	if (parll)
 	{
 		cl = parallel::makeCluster(ncores_clust, outfile = "")
-		parallel::clusterExport(cl, varlist=c("getContribs","K1","verbose"), envir=environment())
+		parallel::clusterExport(cl, c("getContribs","K1","verbose"), envir=environment())
 	}
+	# Iterate clustering algorithm 1 until K1 medoids are found
 	while (length(indices) > K1)
 	{
+		# Balance tasks by splitting the indices set - as evenly as possible
 		indices_workers = .spreadIndices(indices, nb_items_clust1)
 		if (verbose)
 			cat(paste("*** [iterated] Clustering task 1 on ",length(indices)," series\n", sep=""))
@@ -64,16 +66,23 @@ clusteringTask1 = function(indices, getContribs, K1, algoClust1, nb_items_clust1
 #' @rdname clustering
 #' @export
 clusteringTask2 = function(medoids, K2, algoClust2, getRefSeries, nb_ref_curves,
-	nb_series_per_chunk, sync_mean, nbytes,endian,ncores_clust=1,verbose=FALSE,parll=TRUE)
+	nb_series_per_chunk, nbytes,endian,ncores_clust=1,verbose=FALSE,parll=TRUE)
 {
 	if (verbose)
 		cat(paste("*** Clustering task 2 on ",ncol(medoids)," synchrones\n", sep=""))
 
 	if (ncol(medoids) <= K2)
 		return (medoids)
+
+	# A) Obtain synchrones, that is to say the cumulated power consumptions
+	#    for each of the K1 initial groups
 	synchrones = computeSynchrones(medoids, getRefSeries, nb_ref_curves,
-		nb_series_per_chunk, sync_mean, ncores_clust, verbose, parll)
+		nb_series_per_chunk, ncores_clust, verbose, parll)
+
+	# B) Compute the WER distances (Wavelets Extended coefficient of deteRmination)
 	distances = computeWerDists(synchrones, nbytes, endian, ncores_clust, verbose, parll)
+
+	# C) Apply clustering algorithm 2 on the WER distances matrix
 	if (verbose)
 		cat(paste("   algoClust2() on ",nrow(distances)," items\n", sep=""))
 	medoids[ ,algoClust2(distances,K2) ]
@@ -82,7 +91,7 @@ clusteringTask2 = function(medoids, K2, algoClust2, getRefSeries, nb_ref_curves,
 #' computeSynchrones
 #'
 #' Compute the synchrones curves (sum of clusters elements) from a matrix of medoids,
-#' using L2 distances.
+#' using euclidian distance.
 #'
 #' @param medoids big.matrix of medoids (curves of same length as initial series)
 #' @param getRefSeries Function to retrieve initial series (e.g. in stage 2 after series
@@ -94,8 +103,9 @@ clusteringTask2 = function(medoids, K2, algoClust2, getRefSeries, nb_ref_curves,
 #'
 #' @export
 computeSynchrones = function(medoids, getRefSeries, nb_ref_curves,
-	nb_series_per_chunk, sync_mean, ncores_clust=1,verbose=FALSE,parll=TRUE)
+	nb_series_per_chunk, ncores_clust=1,verbose=FALSE,parll=TRUE)
 {
+	# Synchrones computation is embarassingly parallel: compute it by chunks of series
 	computeSynchronesChunk = function(indices)
 	{
 		if (parll)
@@ -103,26 +113,25 @@ computeSynchrones = function(medoids, getRefSeries, nb_ref_curves,
 			require("bigmemory", quietly=TRUE)
 			requireNamespace("synchronicity", quietly=TRUE)
 			require("epclust", quietly=TRUE)
+			# The big.matrix objects need to be attached to be usable on the workers
 			synchrones <- bigmemory::attach.big.matrix(synchrones_desc)
-			if (sync_mean)
-				counts <- bigmemory::attach.big.matrix(counts_desc)
 			medoids <- bigmemory::attach.big.matrix(medoids_desc)
 			m <- synchronicity::attach.mutex(m_desc)
 		}
 
+		# Obtain a chunk of reference series
 		ref_series = getRefSeries(indices)
 		nb_series = ncol(ref_series)
 
 		# Get medoids indices for this chunk of series
 		mi = computeMedoidsIndices(medoids@address, ref_series)
 
+		# Update synchrones using mi above
 		for (i in seq_len(nb_series))
 		{
 			if (parll)
-				synchronicity::lock(m)
+				synchronicity::lock(m) #locking required because several writes at the same time
 			synchrones[, mi[i] ] = synchrones[, mi[i] ] + ref_series[,i]
-			if (sync_mean)
-				counts[ mi[i] ] = counts[ mi[i] ] + 1
 			if (parll)
 				synchronicity::unlock(m)
 		}
@@ -130,34 +139,29 @@ computeSynchrones = function(medoids, getRefSeries, nb_ref_curves,
 
 	K = ncol(medoids) ; L = nrow(medoids)
 	# Use bigmemory (shared==TRUE by default) + synchronicity to fill synchrones in //
-	# TODO: if size > RAM (not our case), use file-backed big.matrix
 	synchrones = bigmemory::big.matrix(nrow=L, ncol=K, type="double", init=0.)
-	if (sync_mean)
-		counts = bigmemory::big.matrix(nrow=K, ncol=1, type="double", init=0)
-	# synchronicity is only for Linux & MacOS; on Windows: run sequentially
+	# NOTE: synchronicity is only for Linux & MacOS; on Windows: run sequentially
 	parll = (requireNamespace("synchronicity",quietly=TRUE)
 		&& parll && Sys.info()['sysname'] != "Windows")
 	if (parll)
 	{
-		m <- synchronicity::boost.mutex()
+		m <- synchronicity::boost.mutex() #for lock/unlock, see computeSynchronesChunk
+		# mutex and big.matrix objects cannot be passed directly:
+		# they will be accessed from their description
 		m_desc <- synchronicity::describe(m)
 		synchrones_desc = bigmemory::describe(synchrones)
-		if (sync_mean)
-			counts_desc = bigmemory::describe(counts)
 		medoids_desc = bigmemory::describe(medoids)
 		cl = parallel::makeCluster(ncores_clust)
-		varlist=c("synchrones_desc","sync_mean","m_desc","medoids_desc","getRefSeries")
-		if (sync_mean)
-			varlist = c(varlist, "counts_desc")
-		parallel::clusterExport(cl, varlist, envir=environment())
+		parallel::clusterExport(cl, envir=environment(),
+			varlist=c("synchrones_desc","m_desc","medoids_desc","getRefSeries"))
 	}
 
 	if (verbose)
-	{
-		if (verbose)
-			cat(paste("--- Compute ",K," synchrones with ",nb_ref_curves," series\n", sep=""))
-	}
-	indices_workers = .spreadIndices(seq_len(nb_ref_curves), nb_series_per_chunk)
+		cat(paste("--- Compute ",K," synchrones with ",nb_ref_curves," series\n", sep=""))
+
+	# Balance tasks by splitting the indices set - maybe not so evenly, but
+	# max==TRUE in next call ensures that no set has more than nb_series_per_chunk items.
+	indices_workers = .spreadIndices(seq_len(nb_ref_curves), nb_series_per_chunk, max=TRUE)
 	ignored <-
 		if (parll)
 			parallel::parLapply(cl, indices_workers, computeSynchronesChunk)
@@ -167,19 +171,7 @@ computeSynchrones = function(medoids, getRefSeries, nb_ref_curves,
 	if (parll)
 		parallel::stopCluster(cl)
 
-	if (!sync_mean)
-		return (synchrones)
-
-	#TODO: can we avoid this loop? ( synchrones = sweep(synchrones, 2, counts, '/') )
-	for (i in seq_len(K))
-		synchrones[,i] = synchrones[,i] / counts[i]
-	#NOTE: odds for some clusters to be empty? (when series already come from stage 2)
-	#      ...maybe; but let's hope resulting K1' be still quite bigger than K2
-	noNA_rows = sapply(seq_len(K), function(i) all(!is.nan(synchrones[,i])))
-	if (all(noNA_rows))
-		return (synchrones)
-	# Else: some clusters are empty, need to slice synchrones
-	bigmemory::as.big.matrix(synchrones[,noNA_rows])
+	return (synchrones)
 }
 
 #' computeWerDists
@@ -196,21 +188,13 @@ computeSynchrones = function(medoids, getRefSeries, nb_ref_curves,
 #' @export
 computeWerDists = function(synchrones, nbytes,endian,ncores_clust=1,verbose=FALSE,parll=TRUE)
 {
-	n <- nrow(synchrones)
-	delta <- ncol(synchrones)
+	n <- ncol(synchrones)
+	L <- nrow(synchrones)
 	#TODO: automatic tune of all these parameters ? (for other users)
+	# 4 here represent 2^5 = 32 half-hours ~ 1 day
 	nvoice   <- 4
 	# noctave = 2^13 = 8192 half hours ~ 180 days ; ~log2(ncol(synchrones))
 	noctave = 13
-	# 4 here represent 2^5 = 32 half-hours ~ 1 day
-	#NOTE: default scalevector == 2^(0:(noctave * nvoice) / nvoice) * s0 (?)
-	scalevector  <- 2^(4:(noctave * nvoice) / nvoice + 1)
-	#condition: ( log2(s0*w0/(2*pi)) - 1 ) * nvoice + 1.5 >= 1
-	s0 = 2
-	w0 = 2*pi
-	scaled=FALSE
-	s0log = as.integer( (log2( s0*w0/(2*pi) ) - 1) * nvoice + 1.5 )
-	totnoct = noctave + as.integer(s0log/nvoice) + 1
 
 	Xwer_dist <- bigmemory::big.matrix(nrow=n, ncol=n, type="double")
 
@@ -228,15 +212,15 @@ computeWerDists = function(synchrones, nbytes,endian,ncores_clust=1,verbose=FALS
 
 	computeSaveCWT = function(index)
 	{
-		ts <- scale(ts(synchrones[index,]), center=TRUE, scale=scaled)
-		totts.cwt = Rwave::cwt(ts, totnoct, nvoice, w0, plot=FALSE)
+		ts <- scale(ts(synchrones[,index]), center=TRUE, scale=FALSE)
+		totts.cwt = Rwave::cwt(ts, totnoct, nvoice, w0=2*pi, twoD=TRUE, plot=FALSE)
 		ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)]
 		#Normalization
 		sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0)
 		sqres <- sweep(ts.cwt,2,sqs,'*')
 		res <- sqres / max(Mod(sqres))
 		#TODO: serializer les CWT, les récupérer via getDataInFile ;
-		#--> OK, faut juste stocker comme séries simples de taille delta*ncol (53*17519)
+		#--> OK, faut juste stocker comme séries simples de taille L*n' (53*17519)
 		binarize(c(as.double(Re(res)),as.double(Im(res))), cwt_file, ncol(res), ",", nbytes, endian)
 	}
 
@@ -245,8 +229,9 @@ computeWerDists = function(synchrones, nbytes,endian,ncores_clust=1,verbose=FALS
 		cl = parallel::makeCluster(ncores_clust)
 		synchrones_desc <- bigmemory::describe(synchrones)
 		Xwer_dist_desc <- bigmemory::describe(Xwer_dist)
-		parallel::clusterExport(cl, varlist=c("synchrones_desc","Xwer_dist_desc","totnoct",
-			"nvoice","w0","s0log","noctave","s0","verbose","getCWT"), envir=environment())
+		parallel::clusterExport(cl, envir=environment(),
+			varlist=c("synchrones_desc","Xwer_dist_desc","totnoct","nvoice","w0","s0log",
+				"noctave","s0","verbose","getCWT"))
 	}
 	
 	if (verbose)
@@ -289,7 +274,7 @@ computeWerDists = function(synchrones, nbytes,endian,ncores_clust=1,verbose=FALS
 		WX  <- epclustFilter(Mod(cwt_i * Conj(cwt_i)))
 		WY <- epclustFilter(Mod(cwt_j * Conj(cwt_j)))
 		wer2 <- sum(colSums(num)^2) / sum(colSums(WX) * colSums(WY))
-		Xwer_dist[i,j] <- sqrt(delta * ncol(cwt_i) * max(1 - wer2, 0.)) #FIXME: wer2 should be < 1
+		Xwer_dist[i,j] <- sqrt(L * ncol(cwt_i) * max(1 - wer2, 0.))
 		Xwer_dist[j,i] <- Xwer_dist[i,j]
 		Xwer_dist[i,i] = 0.
 	}
@@ -314,7 +299,8 @@ computeWerDists = function(synchrones, nbytes,endian,ncores_clust=1,verbose=FALS
 }
 
 # Helper function to divide indices into balanced sets
-.spreadIndices = function(indices, nb_per_set)
+# If max == TRUE, sets sizes cannot exceed nb_per_set
+.spreadIndices = function(indices, nb_per_set, max=FALSE)
 {
 	L = length(indices)
 	nb_workers = floor( L / nb_per_set )
@@ -328,6 +314,13 @@ computeWerDists = function(synchrones, nbytes,endian,ncores_clust=1,verbose=FALS
 	{
 		indices_workers = lapply( seq_len(nb_workers), function(i)
 			indices[(nb_per_set*(i-1)+1):(nb_per_set*i)] )
+
+		if (max)
+		{
+			# Sets are not so well balanced, but size is supposed to be critical
+			return ( c( indices_workers, (L-rem+1):L ) )
+		}
+
 		# Spread the remaining load among the workers
 		rem = L %% nb_per_set
 		while (rem > 0)
diff --git a/epclust/R/de_serialize.R b/epclust/R/de_serialize.R
index fd3a5db..5a9dd1f 100644
--- a/epclust/R/de_serialize.R
+++ b/epclust/R/de_serialize.R
@@ -14,8 +14,8 @@
 #' @param data_ascii Either a matrix or CSV file, with items in rows
 #' @param indices Indices of the lines to retrieve
 #' @param data_bin_file Name of binary file on output (\code{binarize})
-#'   or intput (\code{getDataInFile})
-#' @param nb_per_chunk Number of lines to process in one batch
+#'   or input (\code{getDataInFile})
+#' @param nb_per_chunk Number of lines to process in one batch (big.matrix or connection)
 #' @inheritParams claws
 #' @param getData Function to retrieve data chunks
 #' @param transform Transformation function to apply on data chunks
@@ -30,24 +30,29 @@ NULL
 binarize = function(data_ascii, data_bin_file, nb_per_chunk,
 	sep=",", nbytes=4, endian=.Platform$endian)
 {
+	# data_ascii can be of two types: [big.]matrix, or connection
 	if (is.character(data_ascii))
 		data_ascii = file(data_ascii, open="r")
 	else if (methods::is(data_ascii,"connection") && !isOpen(data_ascii))
 		open(data_ascii)
 	is_matrix = !methods::is(data_ascii,"connection")
 
+	# At first call, the length of a stored row is written. So it's important to determine
+	# if the serialization process already started.
 	first_write = (!file.exists(data_bin_file) || file.info(data_bin_file)$size == 0)
+
+	# Open the binary file for writing (or 'append' if already exists)
 	data_bin = file(data_bin_file, open=ifelse(first_write,"wb","ab"))
 
-	#write data length on first call
 	if (first_write)
 	{
-		#number of items always on 8 bytes
+		# Write data length on first call: number of items always on 8 bytes
 		writeBin(0L, data_bin, size=8, endian=endian)
 		if (is_matrix)
 			data_length = nrow(data_ascii)
 		else #connection
 		{
+			# Read the first line to know data length, and write it then
 			data_line = scan(data_ascii, double(), sep=sep, nlines=1, quiet=TRUE)
 			writeBin(data_line, data_bin, size=nbytes, endian=endian)
 			data_length = length(data_line)
@@ -55,7 +60,11 @@ binarize = function(data_ascii, data_bin_file, nb_per_chunk,
 	}
 
 	if (is_matrix)
+	{
+		# Data is processed by chunks; although this may not be so useful for (normal) matrix
+		# input, it could for a file-backed big.matrix. It's easier to follow a unified pattern.
 		index = 1
+	}
 	repeat
 	{
 		if (is_matrix)
@@ -67,10 +76,14 @@ binarize = function(data_ascii, data_bin_file, nb_per_chunk,
 					double(0)
 			index = index + nb_per_chunk
 		}
-		else
+		else #connection
 			data_chunk = scan(data_ascii, double(), sep=sep, nlines=nb_per_chunk, quiet=TRUE)
+
+		# Data size is unknown in the case of a connection
 		if (length(data_chunk)==0)
 			break
+
+		# Write this chunk of data to the binary file
 		writeBin(data_chunk, data_bin, size=nbytes, endian=endian)
 	}
 
@@ -91,35 +104,47 @@ binarize = function(data_ascii, data_bin_file, nb_per_chunk,
 binarizeTransform = function(getData, transform, data_bin_file, nb_per_chunk,
 	nbytes=4, endian=.Platform$endian)
 {
-	nb_items = 0
+	nb_items = 0 #side-effect: store the number of transformed items
 	index = 1
 	repeat
 	{
+		# Retrieve a chunk of data in a binary file (generally obtained by binarize())
 		data_chunk = getData((index-1)+seq_len(nb_per_chunk))
 		if (is.null(data_chunk))
 			break
+
+		# Apply transformation on the current chunk (by columns)
 		transformed_chunk = transform(data_chunk)
+
+		# Save the result in binary format
 		binarize(transformed_chunk, data_bin_file, nb_per_chunk, ",", nbytes, endian)
+
 		index = index + nb_per_chunk
 		nb_items = nb_items + nrow(data_chunk)
 	}
-	nb_items
+	nb_items #number of transformed items
 }
 
 #' @rdname de_serialize
 #' @export
 getDataInFile = function(indices, data_bin_file, nbytes=4, endian=.Platform$endian)
 {
-	data_bin = file(data_bin_file, "rb")
-	data_size = file.info(data_bin_file)$size
+	data_bin = file(data_bin_file, "rb") #source binary file
+
+	data_size = file.info(data_bin_file)$size #number of bytes in the file
+	# data_length: length of a vector in the binary file (first element, 8 bytes)
 	data_length = readBin(data_bin, "integer", n=1, size=8, endian=endian)
+
+	# Seek all 'indices' columns in the binary file, using data_length and nbytes
+	# to compute the offset ( index i at 8 + i*data_length*nbytes )
 	data_ascii = do.call( cbind, lapply( indices, function(i) {
 		offset = 8+(i-1)*data_length*nbytes
 		if (offset > data_size)
 			return (NULL)
-		ignored = seek(data_bin, offset)
+		ignored = seek(data_bin, offset) #position cursor at computed offset
 		readBin(data_bin, "double", n=data_length, size=nbytes, endian=endian)
 	} ) )
 	close(data_bin)
-	data_ascii
+
+	data_ascii #retrieved data, in columns
 }
diff --git a/epclust/R/main.R b/epclust/R/main.R
index 2af6f90..bcc650a 100644
--- a/epclust/R/main.R
+++ b/epclust/R/main.R
@@ -4,29 +4,35 @@
 #' two stage procedure in parallel (see details).
 #' Input series must be sampled on the same time grid, no missing values.
 #'
-#' @details Summary of the function execution flow:
+#' Summary of the function execution flow:
+#' \enumerate{
+#'   \item Compute and serialize all contributions, obtained through discrete wavelet
+#'     decomposition (see Antoniadis & al. [2013])
+#'   \item Divide series into \code{ntasks} groups to process in parallel. In each task:
 #'   \enumerate{
-#'     \item Compute and serialize all contributions, obtained through discrete wavelet
-#'       decomposition (see Antoniadis & al. [2013])
-#'     \item Divide series into \code{ntasks} groups to process in parallel. In each task:
-#'     \enumerate{
-#'       \item iterate the first clustering algorithm on its aggregated outputs,
-#'         on inputs of size \code{nb_items_clust1}
-#'       \item optionally, if WER=="mix":
-#'         a) compute the K1 synchrones curves,
-#'         b) compute WER distances (K1xK1 matrix) between synchrones and
-#'         c) apply the second clustering algorithm
-#'     }
-#'     \item Launch a final task on the aggregated outputs of all previous tasks:
-#'       in the case WER=="end" this task takes indices in input, otherwise
-#'       (medoid) curves
+#'     \item iterate the first clustering algorithm on its aggregated outputs,
+#'       on inputs of size \code{nb_items_clust1}
+#'     \item optionally, if WER=="mix":
+#'       a) compute the K1 synchrones curves,
+#'       b) compute WER distances (K1xK1 matrix) between synchrones and
+#'       c) apply the second clustering algorithm
 #'   }
-#'   The main argument -- \code{getSeries} -- has a quite misleading name, since it can be
-#'   either a [big.]matrix, a CSV file, a connection or a user function to retrieve
-#'   series; the name was chosen because all types of arguments are converted to a function.
-#'   When \code{getSeries} is given as a function, it must take a single argument,
-#'   'indices', integer vector equal to the indices of the curves to retrieve;
-#'   see SQLite example. The nature and role of other arguments should be clear
+#'   \item Launch a final task on the aggregated outputs of all previous tasks:
+#'     in the case WER=="end" this task takes indices in input, otherwise
+#'     (medoid) curves
+#' }
+#' \cr
+#' The main argument -- \code{getSeries} -- has a quite misleading name, since it can be
+#' either a [big.]matrix, a CSV file, a connection or a user function to retrieve
+#' series; the name was chosen because all types of arguments are converted to a function.
+#' When \code{getSeries} is given as a function, it must take a single argument,
+#' 'indices', integer vector equal to the indices of the curves to retrieve;
+#' see SQLite example. The nature and role of other arguments should be clear
+#' \cr
+#' Note: Since we don't make assumptions on initial data, there is a possibility that
+#' even when serialized, contributions or synchrones do not fit in RAM. For example,
+#' 30e6 series of length 100,000 would lead to a +4Go contribution matrix. Therefore,
+#' it's safer to place these in (binary) files; that's what we do.
 #'
 #' @param getSeries Access to the (time-)series, which can be of one of the three
 #'   following types:
@@ -55,7 +61,6 @@
 #' @param contrib_type Type of contribution: "relative", "logit" or "absolute" (any prefix)
 #' @param WER "end" to apply stage 2 after stage 1 has fully iterated, or "mix" to apply
 #'   stage 2 at the end of each task
-#' @param sync_mean TRUE to compute a synchrone as a mean curve, FALSE for a sum
 #' @param random TRUE (default) for random chunks repartition
 #' @param ntasks Number of tasks (parallel iterations to obtain K1 [if WER=="end"]
 #'   or K2 [if WER=="mix"] medoids); default: 1.
@@ -137,17 +142,12 @@
 #' digest::sha1(medoids_db)
 #' }
 #' @export
-claws <- function(getSeries, K1, K2, nb_series_per_chunk,
-	nb_items_clust1=7*K1,
+claws <- function(getSeries, K1, K2, nb_series_per_chunk, nb_items_clust1=7*K1,
 	algoClust1=function(data,K) cluster::pam(t(data),K,diss=FALSE)$id.med,
 	algoClust2=function(dists,K) cluster::pam(dists,K,diss=TRUE)$id.med,
-	wav_filt="d8", contrib_type="absolute",
-	WER="end",sync_mean=TRUE,
-	random=TRUE,
-	ntasks=1, ncores_tasks=1, ncores_clust=4,
-	sep=",",
-	nbytes=4, endian=.Platform$endian,
-	verbose=FALSE, parll=TRUE)
+	wav_filt="d8", contrib_type="absolute", WER="end", random=TRUE,
+	ntasks=1, ncores_tasks=1, ncores_clust=4, sep=",", nbytes=4,
+	endian=.Platform$endian, verbose=FALSE, parll=TRUE)
 {
 	# Check/transform arguments
 	if (!is.matrix(getSeries) && !bigmemory::is.big.matrix(getSeries)
@@ -173,7 +173,6 @@ claws <- function(getSeries, K1, K2, nb_series_per_chunk,
 		stop("'contrib_type' in {'relative','absolute','logit'}")
 	if (WER!="end" && WER!="mix")
 		stop("'WER': in {'end','mix'}")
-	sync_mean <- .toLogical(sync_mean)
 	random <- .toLogical(random)
 	ntasks <- .toInteger(ntasks, function(x) x>=1)
 	ncores_tasks <- .toInteger(ncores_tasks, function(x) x>=1)
@@ -184,27 +183,20 @@ claws <- function(getSeries, K1, K2, nb_series_per_chunk,
 	verbose <- .toLogical(verbose)
 	parll <- .toLogical(parll)
 
-	# Since we don't make assumptions on initial data, there is a possibility that even
-	# when serialized, contributions or synchrones do not fit in RAM. For example,
-	# 30e6 series of length 100,000 would lead to a +4Go contribution matrix. Therefore,
-	# it's safer to place these in (binary) files, located in the following folder.
-	bin_dir <- ".epclust_bin/"
-	dir.create(bin_dir, showWarnings=FALSE, mode="0755")
-
 	# Binarize series if getSeries is not a function; the aim is to always use a function,
 	# to uniformize treatments. An equally good alternative would be to use a file-backed
-	# bigmemory::big.matrix, but it would break the uniformity.
+	# bigmemory::big.matrix, but it would break the "all-is-function" pattern.
 	if (!is.function(getSeries))
 	{
 		if (verbose)
 			cat("...Serialize time-series\n")
-		series_file = paste(bin_dir,"data",sep="") ; unlink(series_file)
+		series_file = ".series.bin" ; unlink(series_file)
 		binarize(getSeries, series_file, nb_series_per_chunk, sep, nbytes, endian)
 		getSeries = function(inds) getDataInFile(inds, series_file, nbytes, endian)
 	}
 
 	# Serialize all computed wavelets contributions into a file
-	contribs_file = paste(bin_dir,"contribs",sep="") ; unlink(contribs_file)
+	contribs_file = ".contribs.bin" ; unlink(contribs_file)
 	index = 1
 	nb_curves = 0
 	if (verbose)
@@ -221,8 +213,8 @@ claws <- function(getSeries, K1, K2, nb_series_per_chunk,
 	if (nb_series_per_task < K2)
 		stop("Too many tasks: less series in one task than final number of clusters")
 
-	# Generate a random permutation of 1:N (if random==TRUE); otherwise just use arrival
-	# (storage) order.
+	# Generate a random permutation of 1:N (if random==TRUE);
+	# otherwise just use arrival (storage) order.
 	indices_all = if (random) sample(nb_curves) else seq_len(nb_curves)
 	# Split (all) indices into ntasks groups of ~same size
 	indices_tasks = lapply(seq_len(ntasks), function(i) {
@@ -236,9 +228,9 @@ claws <- function(getSeries, K1, K2, nb_series_per_chunk,
 		# under Linux. All necessary variables are passed to the workers.
 		cl = parallel::makeCluster(ncores_tasks, outfile="")
 		varlist = c("getSeries","getContribs","K1","K2","algoClust1","algoClust2",
-			"nb_series_per_chunk","nb_items_clust1","ncores_clust","sep",
-			"nbytes","endian","verbose","parll")
-		if (WER=="mix")
+			"nb_series_per_chunk","nb_items_clust1","ncores_clust",
+			"sep","nbytes","endian","verbose","parll")
+		if (WER=="mix" && ntasks>1)
 			varlist = c(varlist, "medoids_file")
 		parallel::clusterExport(cl, varlist, envir = environment())
 	}
@@ -249,19 +241,19 @@ claws <- function(getSeries, K1, K2, nb_series_per_chunk,
 	# where n = N / ntasks, N being the total number of curves.
 	runTwoStepClustering = function(inds)
 	{
-		# When running in parallel, the environment is blank: we need to load required
+		# When running in parallel, the environment is blank: we need to load the required
 		# packages, and pass useful variables.
 		if (parll && ntasks>1)
 			require("epclust", quietly=TRUE)
 		indices_medoids = clusteringTask1(
 			inds, getContribs, K1, algoClust1, nb_series_per_chunk, ncores_clust, verbose, parll)
-		if (WER=="mix")
+		if (WER=="mix" && ntasks>1)
 		{
-			if (parll && ntasks>1)
+			if (parll)
 				require("bigmemory", quietly=TRUE)
 			medoids1 = bigmemory::as.big.matrix( getSeries(indices_medoids) )
 			medoids2 = clusteringTask2(medoids1, K2, algoClust2, getSeries, nb_curves,
-				nb_series_per_chunk, sync_mean, nbytes, endian, ncores_clust, verbose, parll)
+				nb_series_per_chunk, nbytes, endian, ncores_clust, verbose, parll)
 			binarize(medoids2, medoids_file, nb_series_per_chunk, sep, nbytes, endian)
 			return (vector("integer",0))
 		}
@@ -271,8 +263,8 @@ claws <- function(getSeries, K1, K2, nb_series_per_chunk,
 	# Synchrones (medoids) need to be stored only if WER=="mix"; indeed in this case, every
 	# task output is a set of new (medoids) curves. If WER=="end" however, output is just a
 	# set of indices, representing some initial series.
-	if (WER=="mix")
-		{medoids_file = paste(bin_dir,"medoids",sep="") ; unlink(medoids_file)}
+	if (WER=="mix" && ntasks>1)
+		{medoids_file = ".medoids.bin" ; unlink(medoids_file)}
 
 	if (verbose)
 	{
@@ -283,8 +275,7 @@ claws <- function(getSeries, K1, K2, nb_series_per_chunk,
 	}
 
 	# As explained above, indices will be assigned to ntasks*K1 medoids indices [if WER=="end"],
-	# or nothing (empty vector) if WER=="mix"; in this case, medoids (synchrones) are stored
-	# in a file.
+	# or nothing (empty vector) if WER=="mix"; in this case, synchrones are stored in a file.
 	indices <-
 		if (parll && ntasks>1)
 			unlist( parallel::parLapply(cl, indices_tasks, runTwoStepClustering) )
@@ -294,14 +285,14 @@ claws <- function(getSeries, K1, K2, nb_series_per_chunk,
 		parallel::stopCluster(cl)
 
 	# Right before the final stage, two situations are possible:
-	#  a. data to be processed now sit in binary format in medoids_file (if WER=="mix")
+	#  a. data to be processed now sit in a binary format in medoids_file (if WER=="mix")
 	#  b. data still is the initial set of curves, referenced by the ntasks*K1 indices
 	# So, the function getSeries() will potentially change. However, computeSynchrones()
 	# requires a function retrieving the initial series. Thus, the next line saves future
 	# conditional instructions.
 	getRefSeries = getSeries
 
-	if (WER=="mix")
+	if (WER=="mix" && ntasks>1)
 	{
 		indices = seq_len(ntasks*K2)
 		# Now series (synchrones) must be retrieved from medoids_file
@@ -316,9 +307,6 @@ claws <- function(getSeries, K1, K2, nb_series_per_chunk,
 			contribs_file, nb_series_per_chunk, nbytes, endian)
 	}
 
-#TODO: check THAT
-
-
 	# Run step2 on resulting indices or series (from file)
 	if (verbose)
 		cat("...Run final // stage 1 + stage 2\n")
@@ -326,10 +314,12 @@ claws <- function(getSeries, K1, K2, nb_series_per_chunk,
 		nb_series_per_chunk, ncores_tasks*ncores_clust, verbose, parll)
 	medoids1 = bigmemory::as.big.matrix( getSeries(indices_medoids) )
 	medoids2 = clusteringTask2(medoids1, K2, algoClust2, getRefSeries, nb_curves,
-		nb_series_per_chunk, sync_mean, nbytes, endian, ncores_tasks*ncores_clust, verbose, parll)
+		nb_series_per_chunk, nbytes, endian, ncores_tasks*ncores_clust, verbose, parll)
 
-	# Cleanup: remove temporary binary files and their folder
-	unlink(bin_dir, recursive=TRUE)
+	# Cleanup: remove temporary binary files
+	tryCatch(
+		{unlink(series_file); unlink(contribs_file); unlink(medoids_file)},
+		error = function(e) {})
 
 	# Return medoids as a standard matrix, since K2 series have to fit in RAM
 	# (clustering algorithm 1 takes K1 > K2 of them as input)
@@ -352,10 +342,12 @@ curvesToContribs = function(series, wav_filt, contrib_type, coin=FALSE)
 	series = as.matrix(series) #1D serie could occur
 	L = nrow(series)
 	D = ceiling( log2(L) )
+	# Series are interpolated to all have length 2^D
 	nb_sample_points = 2^D
 	apply(series, 2, function(x) {
 		interpolated_curve = spline(1:L, x, n=nb_sample_points)$y
 		W = wavelets::dwt(interpolated_curve, filter=wav_filt, D)@W
+		# Compute the sum of squared discrete wavelet coefficients, for each scale
 		nrj = rev( sapply( W, function(v) ( sqrt( sum(v^2) ) ) ) )
 		if (contrib_type!="absolute")
 			nrj = nrj / sum(nrj)
diff --git a/epclust/src/computeMedoidsIndices.cpp b/epclust/src/computeMedoidsIndices.cpp
index f247584..895031a 100644
--- a/epclust/src/computeMedoidsIndices.cpp
+++ b/epclust/src/computeMedoidsIndices.cpp
@@ -10,33 +10,39 @@ using namespace Rcpp;
 
 //' computeMedoidsIndices
 //'
-//' Compute medoids indices
+//' For each column of the 'series' matrix input, search for the closest medoid
+//' (euclidian distance) and store its index
 //'
-//' @param pMedoids External pointer
-//' @param ref_series reference series
+//' @param pMedoids External pointer (a big.matrix 'address' slot in R)
+//' @param series (reference) series, a matrix of size Lxn
 //'
-//' @return A map serie number -> medoid index
+//' @return An integer vector of the closest medoids indices, for each (column) serie
 // [[Rcpp::export]]
-IntegerVector computeMedoidsIndices(SEXP pMedoids, NumericMatrix ref_series)
+IntegerVector computeMedoidsIndices(SEXP pMedoids, NumericMatrix series)
 {
+	// Turn SEXP external pointer into BigMatrix (description) object
 	XPtr<BigMatrix> pMed(pMedoids);
+	// medoids: access to the content of the BigMatrix object
 	MatrixAccessor<double> medoids = MatrixAccessor<double>(*pMed);
-	int nb_series = ref_series.ncol(),
+
+	int nb_series = series.ncol(),
 		K = pMed->ncol(),
 		L = pMed->nrow();
 	IntegerVector mi(nb_series);
 
-	for (int i=0; i<nb_series ; i++)
+	for (int i=0; i<nb_series ; i++) //column index in series
 	{
-		// mi[i] <- which.min( rowSums( sweep(medoids, 2, ref_series[i,], '-')^2 ) )
+		// In R: mi[i] <- which.min( rowSums( sweep(medoids, 2, series[i,], '-')^2 ) )
+		// In C(++), computations must be unrolled
 		mi[i] = 0;
 		double best_dist = DBL_MAX;
-		for (int j=0; j<K; j++)
+		for (int j=0; j<K; j++) //column index in medoids
 		{
 			double dist_ij = 0.;
-			for (int k=0; k<L; k++)
+			for (int k=0; k<L; k++) //common row index (medoids, series)
 			{
-				double delta = ref_series(k,i) - *(medoids[j]+k);
+				// Accessing values for a big matrix is a bit weird; see Rcpp gallery/bigmemory
+				double delta = series(k,i) - *(medoids[j]+k);
 				dist_ij += delta * delta;
 			}
 			if (dist_ij < best_dist)
diff --git a/epclust/src/filter.cpp b/epclust/src/filter.cpp
index cb5a8a0..5268a5f 100644
--- a/epclust/src/filter.cpp
+++ b/epclust/src/filter.cpp
@@ -1,51 +1,50 @@
 #include <Rcpp.h>
 
-#include <R.h>           //  Rprintf()
-//#include <R_ext/Utils.h> //  user interrupts
-#include <Rdefines.h>
-#include <Rinternals.h>
-
-#include <stdio.h>
-
 using namespace Rcpp;
 
 //' filter
 //'
-//' Filter time-series
+//' Filter [time-]series by replacing all values by the moving average of previous, current and
+//' next value. Possible extensions: larger window, gaussian kernel... (but would be costly!).
+//' Note: border values are unchanged.
 //'
-//' @param cwt Continuous wavelets transform
+//' @param cwt Continuous wavelets transform (in columns): a matrix of size LxD
 //'
-//' @return The filtered CWT
+//' @return The filtered CWT, in a matrix of same size (LxD)
 // [[Rcpp::export]]
 RcppExport SEXP epclustFilter(SEXP cwt_)
 {
+	// NOTE: C-style for better efficiency (this must be as fast as possible)
 	int L = INTEGER(Rf_getAttrib(cwt_, R_DimSymbol))[0],
 		D = INTEGER(Rf_getAttrib(cwt_, R_DimSymbol))[1];
 	double *cwt = REAL(cwt_);
-	SEXP fcwt_;
+
+	SEXP fcwt_; //the filtered result
 	PROTECT(fcwt_ = Rf_allocMatrix(REALSXP, L, D));
-		double* fcwt = REAL(fcwt_); //(double*)malloc(L*D*sizeof(double));
+	double* fcwt = REAL(fcwt_); //pointer to the encapsulated vector
 
-	//TODO: coding style is terrible... no time for now.
-	for (int col=0; col<D; col++)
+	// NOTE: unused loop parameter: shifting at the end of the loop is more efficient
+	for (int col=D-1; col>=0; col++)
 	{
-		double v1 = cwt[0];
-		double ma = v1 + cwt[1] + cwt[2];
+		double v1 = cwt[0]; //first value
+		double ms = v1 + cwt[1] + cwt[2]; //moving sum at second value
 		for (int i=1; i<L-2; i++)
 		{
-			fcwt[i] = ma / 3.;
-			ma = ma - v1 + cwt[i+2];
-			v1 = cwt[i];
+			fcwt[i] = ms / 3.; //ms / 3: moving average at current index i
+			ms = ms - v1 + cwt[i+2]; //update ms: remove oldest items, add next
+			v1 = cwt[i]; //update first value for next iteration
 		}
+
+		// Fill a few border values not computed in the loop
 		fcwt[0] = cwt[0];
-		fcwt[L-2] = ma / 3.;
+		fcwt[L-2] = ms / 3.;
 		fcwt[L-1] = cwt[L-1];
+
+		// Shift by L == increment column index by 1 (storage per column)
 		cwt = cwt + L;
 		fcwt = fcwt + L;
 	}
 
-//	REAL(fcwt_) = fcwt;
 	UNPROTECT(1);
-
 	return fcwt_;
 }
diff --git a/epclust/tests/testthat/helper.clustering.R b/epclust/tests/testthat/helper.clustering.R
index 21a791a..273a0b7 100644
--- a/epclust/tests/testthat/helper.clustering.R
+++ b/epclust/tests/testthat/helper.clustering.R
@@ -1,15 +1,18 @@
-#shorthand: map 1->1, 2->2, 3->3, 4->1, ..., 149->2, 150->3, ... (is base==3)
+# Shorthand: map 1->1, 2->2, 3->3, 4->1, ..., 149->2, 150->3, ... (is base==3)
 I = function(i, base)
 	(i-1) %% base + 1
 
-# NOTE: medoids can be a big.matrix
+# Compute the sum of (normalized) sum of squares of closest distances to a medoid.
+# Note: medoids can be a big.matrix
 computeDistortion = function(series, medoids)
 {
+	if (bigmemory::is.big.matrix(medoids))
+		medoids = medoids[,] #extract standard matrix
+
 	n = nrow(series) ; L = ncol(series)
 	distortion = 0.
-	if (bigmemory::is.big.matrix(medoids))
-		medoids = medoids[,]
 	for (i in seq_len(n))
 		distortion = distortion + min( colSums( sweep(medoids,1,series[,i],'-')^2 ) / L )
+
 	distortion / n
 }
diff --git a/epclust/tests/testthat/helper.computeMedoidsIndices.R b/epclust/tests/testthat/helper.computeMedoidsIndices.R
index 9342feb..cd6a30e 100644
--- a/epclust/tests/testthat/helper.computeMedoidsIndices.R
+++ b/epclust/tests/testthat/helper.computeMedoidsIndices.R
@@ -1,10 +1,12 @@
-#R-equivalent of computeMedoidsIndices, requiring a matrix
-#(thus potentially breaking "fit-in-memory" hope)
+# R-equivalent of computeMedoidsIndices, requiring a matrix
+# (thus potentially breaking "fit-in-memory" hope)
 R_computeMedoidsIndices <- function(medoids, series)
 {
-	nb_series = ncol(series)
+	nb_series = ncol(series) #series in columns
+
 	mi = rep(NA,nb_series)
 	for (i in 1:nb_series)
 		mi[i] <- which.min( colSums( sweep(medoids, 1, series[,i], '-')^2 ) )
+
 	mi
 }
diff --git a/epclust/tests/testthat/test.clustering.R b/epclust/tests/testthat/test.clustering.R
index e22835a..c10f820 100644
--- a/epclust/tests/testthat/test.clustering.R
+++ b/epclust/tests/testthat/test.clustering.R
@@ -21,11 +21,11 @@ test_that("computeSynchrones behave as expected",
 		if (length(indices)>0) series[,indices] else NULL
 	}
 	synchrones = computeSynchrones(bigmemory::as.big.matrix(cbind(s1,s2,s3)), getRefSeries,
-		n, 100, sync_mean=TRUE, verbose=TRUE, parll=FALSE)
+		n, 100, verbose=TRUE, parll=FALSE)
 
 	expect_equal(dim(synchrones), c(L,K))
 	for (i in 1:K)
-		expect_equal(synchrones[,i], s[[i]], tolerance=0.01)
+		expect_equal(synchrones[,i]/100, s[[i]], tolerance=0.01)
 })
 
 # Helper function to divide indices into balanced sets
@@ -105,7 +105,7 @@ test_that("clusteringTask2 behave as expected",
 	medoids_K1 = bigmemory::as.big.matrix( sapply( 1:K1, function(i) s[[I(i,K1)]] ) )
 	algoClust2 = function(dists,K) cluster::pam(dists,K,diss=TRUE)$id.med
 	medoids_K2 = clusteringTask2(medoids_K1, K2, algoClust2, getRefSeries,
-		n, 75, sync_mean=TRUE, verbose=TRUE, parll=FALSE)
+		n, 75, verbose=TRUE, parll=FALSE)
 
 	expect_equal(dim(medoids_K2), c(L,K2))
 	# Not easy to evaluate result: at least we expect it to be better than random selection of
diff --git a/epclust/tests/testthat/test.wavelets.R b/epclust/tests/testthat/test.wavelets.R
index 5eb19c5..96f9db3 100644
--- a/epclust/tests/testthat/test.wavelets.R
+++ b/epclust/tests/testthat/test.wavelets.R
@@ -1,3 +1,21 @@
-#TODO: test computeWerDists (reference result? Jairo?)
+context("wavelets discrete & continuous")
 
-#TODO: test sur curvesToCoefs! ref results ?
+test_that("curvesToContribs behave as expected",
+{
+	curvesToContribs(...)
+})
+
+test_that("computeWerDists output correct results",
+{
+	nbytes = 8
+	endian = "little"
+
+	# On two identical series
+	serie = rnorm(212, sd=5)
+	synchrones = cbind(serie, serie)
+	dists = computeWerDists(synchrones, nbytes,endian,verbose=TRUE,parll=FALSE)
+	expect_equal(dists, matrix(0.,nrow=2,ncol=2))
+
+	# On two constant series
+	# TODO:...
+})