first tests for Neighbors2 after debug; TODO: some missing forecasts
authorBenjamin Auder <benjamin.auder@somewhere>
Tue, 28 Mar 2017 15:35:39 +0000 (17:35 +0200)
committerBenjamin Auder <benjamin.auder@somewhere>
Tue, 28 Mar 2017 15:35:39 +0000 (17:35 +0200)
pkg/DESCRIPTION
pkg/R/F_Neighbors.R
pkg/R/F_Neighbors2.R
pkg/R/computeForecast.R
reports/report.gj
reports/report.ipynb

index b932d77..8d3c4c3 100644 (file)
@@ -1,10 +1,10 @@
 Package: talweg
 Title: Time-Series Samples Forecasted With Exogenous Variables
 Version: 0.1-0
-Description: Forecast a curve sampled within the day (seconds, minutes, hours...),
-    using past measured curves + paste exogenous informations,
-    which could be some aggregated measure on the past curves, the weather...
-    Main starting point: computeForecast().
+Description: Forecast a curve sampled within the day (seconds, minutes,
+    hours...), using past measured curves + paste exogenous informations, which
+    could be some aggregated measure on the past curves, the weather... Main
+    starting point: computeForecast().
 Author: Benjamin Auder <Benjamin.Auder@math.u-psud.fr> [aut,cre],
     Jean-Michel Poggi <Jean-Michel.Poggi@parisdescartes.fr> [ctb],
     Bruno Portier <Bruno.Portier@insa-rouen.fr>, [ctb]
@@ -22,13 +22,14 @@ Suggests:
 LazyData: yes
 URL: http://git.auder.net/?p=talweg.git
 License: MIT + file LICENSE
-RoxygenNote: 6.0.1
-Collate: 
+RoxygenNote: 5.0.1
+Collate:
     'A_NAMESPACE.R'
     'Data.R'
     'Forecaster.R'
     'F_Average.R'
     'F_Neighbors.R'
+    'F_Neighbors2.R'
     'F_Persistence.R'
     'F_Zero.R'
     'Forecast.R'
index 600c5c8..5b2c899 100644 (file)
@@ -33,21 +33,25 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster",
                        # Indices of similar days for cross-validation; TODO: 45 = magic number
                        sdays = getSimilarDaysIndices(today, limit=45, same_season=FALSE)
 
+                       cv_days = intersect(fdays,sdays)
+                       # Limit to 20 most recent matching days (TODO: 20 == magic number)
+                       cv_days = sort(cv_days,decreasing=TRUE)[1:min(20,length(cv_days))]
+
                        # Function to optimize h : h |--> sum of prediction errors on last 45 "similar" days
                        errorOnLastNdays = function(h, kernel, simtype)
                        {
                                error = 0
                                nb_jours = 0
-                               for (i in intersect(fdays,sdays))
+                               for (i in seq_along(cv_days))
                                {
                                        # mix_strategy is never used here (simtype != "mix"), therefore left blank
                                        prediction = private$.predictShapeAux(data,
-                                               fdays, i, horizon, h, kernel, simtype, FALSE)
+                                               fdays, cv_days[i], horizon, h, kernel, simtype, FALSE)
                                        if (!is.na(prediction[1]))
                                        {
                                                nb_jours = nb_jours + 1
                                                error = error +
-                                                       mean((data$getCenteredSerie(i+1)[1:horizon] - prediction)^2)
+                                                       mean((data$getCenteredSerie(cv_days[i]+1)[1:horizon] - prediction)^2)
                                        }
                                }
                                return (error / nb_jours)
@@ -96,14 +100,11 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster",
                                h_endo = ifelse(simtype=="mix", h[1], h)
 
                                # Distances from last observed day to days in the past
-                               distances2 = rep(NA, length(fdays))
-                               for (i in seq_along(fdays))
-                               {
-                                       delta = data$getCenteredSerie(today) - data$getCenteredSerie(fdays[i])
-                                       # Require at least half of non-NA common values to compute the distance
-                                       if ( !any( is.na(delta) ) )
-                                               distances2[i] = mean(delta^2)
-                               Centered}
+                               serieToday = data$getSerie(today)
+                               distances2 = sapply(fdays, function(i) {
+                                       delta = serieToday - data$getSerie(i)
+                                       mean(delta^2)
+                               })
 
                                sd_dist = sd(distances2)
                                if (sd_dist < .Machine$double.eps)
@@ -136,12 +137,10 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster",
                                sigma_inv = solve(sigma) #TODO: use pseudo-inverse if needed?
 
                                # Distances from last observed day to days in the past
-                               distances2 = rep(NA, nrow(M)-1)
-                               for (i in 2:nrow(M))
-                               {
-                                       delta = M[1,] - M[i,]
-                                       distances2[i-1] = delta %*% sigma_inv %*% delta
-                               }
+                               distances2 = sapply(seq_along(fdays), function(i) {
+                                       delta = M[1,] - M[i+1,]
+                                       delta %*% sigma_inv %*% delta
+                               })
 
                                sd_dist = sd(distances2)
                                if (sd_dist < .Machine$double.eps)
index 7267661..fb63e40 100644 (file)
@@ -9,6 +9,15 @@ Neighbors2Forecaster = R6::R6Class("Neighbors2Forecaster",
        inherit = Forecaster,
 
        public = list(
+               predictSerie = function(data, today, memory, horizon, ...)
+               {
+                       # Parameters (potentially) computed during shape prediction stage
+                       predicted_shape = self$predictShape(data, today, memory, horizon, ...)
+#                      predicted_delta = private$.pjump(data,today,memory,horizon,private$.params,...)
+                       # Predicted shape is aligned it on the end of current day + jump
+#                      predicted_shape+tail(data$getSerie(today),1)-predicted_shape[1]+predicted_delta
+                       predicted_shape
+               },
                predictShape = function(data, today, memory, horizon, ...)
                {
                        # (re)initialize computed parameters
@@ -22,43 +31,73 @@ Neighbors2Forecaster = R6::R6Class("Neighbors2Forecaster",
                        fdays = getNoNA2(data, max(today-memory,1), today-1)
 
                        # Get optional args
+                       simtype = ifelse(hasArg("simtype"), list(...)$simtype, "mix") #or "endo", or "exo"
                        kernel = ifelse(hasArg("kernel"), list(...)$kernel, "Gauss") #or "Epan"
                        if (hasArg(h_window))
                        {
                                return ( private$.predictShapeAux(data,
-                                       fdays, today, horizon, list(...)$h_window, kernel, TRUE) )
+                                       fdays, today, horizon, list(...)$h_window, kernel, simtype, TRUE) )
                        }
 
                        # Indices of similar days for cross-validation; TODO: 45 = magic number
                        sdays = getSimilarDaysIndices(today, limit=45, same_season=FALSE)
 
+                       cv_days = intersect(fdays,sdays)
+                       # Limit to 20 most recent matching days (TODO: 20 == magic number)
+                       cv_days = sort(cv_days,decreasing=TRUE)[1:min(20,length(cv_days))]
+
                        # Function to optimize h : h |--> sum of prediction errors on last 45 "similar" days
-                       errorOnLastNdays = function(h, kernel)
+                       errorOnLastNdays = function(h, kernel, simtype)
                        {
                                error = 0
                                nb_jours = 0
-                               for (day in intersect(fdays,sdays))
+                               for (i in seq_along(cv_days))
                                {
                                        # mix_strategy is never used here (simtype != "mix"), therefore left blank
-                                       prediction = private$.predictShapeAux(data,fdays,day,horizon,h,kernel,FALSE)
+                                       prediction = private$.predictShapeAux(data,
+                                               fdays, cv_days[i], horizon, h, kernel, simtype, FALSE)
                                        if (!is.na(prediction[1]))
                                        {
                                                nb_jours = nb_jours + 1
                                                error = error +
-                                                       mean((data$getSerie(i+1)[1:horizon] - prediction)^2)
+                                                       mean((data$getSerie(cv_days[i]+1)[1:horizon] - prediction)^2)
                                        }
                                }
                                return (error / nb_jours)
                        }
 
-                       # h :: only for endo in this variation
-                       h_best = optimize(errorOnLastNdays, c(0,7), kernel=kernel)$minimum
-                       return (private$.predictShapeAux(data,fdays,today,horizon,h_best,kernel,TRUE))
+                       if (simtype != "endo")
+                       {
+                               h_best_exo = optimize(
+                                       errorOnLastNdays, c(0,10), kernel=kernel, simtype="exo")$minimum
+                       }
+                       if (simtype != "exo")
+                       {
+                               h_best_endo = optimize(
+                                       errorOnLastNdays, c(0,10), kernel=kernel, simtype="endo")$minimum
+                       }
+
+                       if (simtype == "endo")
+                       {
+                               return (private$.predictShapeAux(data,
+                                       fdays, today, horizon, h_best_endo, kernel, "endo", TRUE))
+                       }
+                       if (simtype == "exo")
+                       {
+                               return (private$.predictShapeAux(data,
+                                       fdays, today, horizon, h_best_exo, kernel, "exo", TRUE))
+                       }
+                       if (simtype == "mix")
+                       {
+                               h_best_mix = c(h_best_endo,h_best_exo)
+                               return(private$.predictShapeAux(data,
+                                       fdays, today, horizon, h_best_mix, kernel, "mix", TRUE))
+                       }
                }
        ),
        private = list(
                # Precondition: "today" is full (no NAs)
-               .predictShapeAux = function(data, fdays, today, horizon, h, kernel, final_call)
+               .predictShapeAux = function(data, fdays, today, horizon, h, kernel, simtype, final_call)
                {
                        fdays = fdays[ fdays < today ]
                        # TODO: 3 = magic number
@@ -69,7 +108,7 @@ Neighbors2Forecaster = R6::R6Class("Neighbors2Forecaster",
                        sdays = getSimilarDaysIndices(today, limit=45, same_season=TRUE, data)
                        indices = intersect(fdays,sdays)
                        levelToday = data$getLevel(today)
-                       distances = sapply(seq_along(indices), function(i) abs(data$getLevel(i)-levelToday))
+                       distances = sapply(indices, function(i) abs(data$getLevel(i)-levelToday))
                        same_pollution = (distances <= 2)
                        if (sum(same_pollution) < 3) #TODO: 3 == magic number
                        {
@@ -79,53 +118,79 @@ Neighbors2Forecaster = R6::R6Class("Neighbors2Forecaster",
                        }
                        indices = indices[same_pollution]
 
-                       # Now OK: indices same season, same pollution level
-                       # ...........
-
+                       if (simtype != "exo")
+                       {
+                               h_endo = ifelse(simtype=="mix", h[1], h)
 
-                       # ENDO:: Distances from last observed day to days in the past
-                       serieToday = data$getSerie(today)
-                       distances2 = sapply(indices, function(i) {
-                               delta = serieToday - data$getSerie(i)
-                               distances2[i] = mean(delta^2)
-                       })
+                               # Distances from last observed day to days in the past
+                               serieToday = data$getSerie(today)
+                               distances2 = sapply(indices, function(i) {
+                                       delta = serieToday - data$getSerie(i)
+                                       mean(delta^2)
+                               })
 
-                       sd_dist = sd(distances2)
-                       if (sd_dist < .Machine$double.eps)
-                       {
+                               sd_dist = sd(distances2)
+                               if (sd_dist < .Machine$double.eps)
+                               {
 #                                      warning("All computed distances are very close: stdev too small")
-                               sd_dist = 1 #mostly for tests... FIXME:
+                                       sd_dist = 1 #mostly for tests... FIXME:
+                               }
+                               simils_endo =
+                                       if (kernel=="Gauss")
+                                               exp(-distances2/(sd_dist*h_endo^2))
+                                       else
+                                       {
+                                               # Epanechnikov
+                                               u = 1 - distances2/(sd_dist*h_endo^2)
+                                               u[abs(u)>1] = 0.
+                                               u
+                                       }
                        }
-                       simils_endo =
-                               if (kernel=="Gauss")
-                                       exp(-distances2/(sd_dist*h_endo^2))
-                               else
+
+                       if (simtype != "endo")
+                       {
+                               h_exo = ifelse(simtype=="mix", h[2], h)
+
+                               M = matrix( nrow=1+length(indices), ncol=1+length(data$getExo(today)) )
+                               M[1,] = c( data$getLevel(today), as.double(data$getExo(today)) )
+                               for (i in seq_along(indices))
+                                       M[i+1,] = c( data$getLevel(indices[i]), as.double(data$getExo(indices[i])) )
+
+                               sigma = cov(M) #NOTE: robust covariance is way too slow
+#                              sigma_inv = solve(sigma) #TODO: use pseudo-inverse if needed?
+                               sigma_inv = MASS::ginv(sigma)
+#if (final_call) browser()
+                               # Distances from last observed day to days in the past
+                               distances2 = sapply(seq_along(indices), function(i) {
+                                       delta = M[1,] - M[i+1,]
+                                       delta %*% sigma_inv %*% delta
+                               })
+
+                               sd_dist = sd(distances2)
+                               if (sd_dist < .25 * sqrt(.Machine$double.eps))
                                {
-                                       # Epanechnikov
-                                       u = 1 - distances2/(sd_dist*h_endo^2)
-                                       u[abs(u)>1] = 0.
-                                       u
+#                                      warning("All computed distances are very close: stdev too small")
+                                       sd_dist = 1 #mostly for tests... FIXME:
                                }
+                               simils_exo =
+                                       if (kernel=="Gauss")
+                                               exp(-distances2/(sd_dist*h_exo^2))
+                                       else
+                                       {
+                                               # Epanechnikov
+                                               u = 1 - distances2/(sd_dist*h_exo^2)
+                                               u[abs(u)>1] = 0.
+                                               u
+                                       }
+                       }
 
-#                      # EXOGENS: distances computations are enough
-#                      # TODO: search among similar concentrations....... at this stage ?!
-#                      M = matrix( nrow=1+length(fdays), ncol=1+length(data$getExo(today)) )
-#                      M[1,] = c( data$getLevel(today), as.double(data$getExo(today)) )
-#                      for (i in seq_along(fdays))
-#                              M[i+1,] = c( data$getLevel(fdays[i]), as.double(data$getExo(fdays[i])) )
-#
-#                      sigma = cov(M) #NOTE: robust covariance is way too slow
-#                      sigma_inv = solve(sigma) #TODO: use pseudo-inverse if needed?
-#
-#                      # Distances from last observed day to days in the past
-#                      distances2 = rep(NA, nrow(M)-1)
-#                      for (i in 2:nrow(M))
-#                      {
-#                              delta = M[1,] - M[i,]
-#                              distances2[i-1] = delta %*% sigma_inv %*% delta
-#                      }
-
-                       similarities = simils_endo
+                       similarities =
+                               if (simtype == "exo")
+                                       simils_exo
+                               else if (simtype == "endo")
+                                       simils_endo
+                               else #mix
+                                       simils_endo * simils_exo
 
                        prediction = rep(0, horizon)
                        for (i in seq_along(indices))
@@ -135,8 +200,14 @@ Neighbors2Forecaster = R6::R6Class("Neighbors2Forecaster",
                        if (final_call)
                        {
                                private$.params$weights <- similarities
-                               private$.params$indices <- indices
-                               private$.params$window <- h
+                               private$.params$indices <- fdays
+                               private$.params$window <-
+                                       if (simtype=="endo")
+                                               h_endo
+                                       else if (simtype=="exo")
+                                               h_exo
+                                       else #mix
+                                               c(h_endo,h_exo)
                        }
 
                        return (prediction)
index 8cf8861..3537e8a 100644 (file)
@@ -55,13 +55,28 @@ computeForecast = function(data, indices, forecaster, pjump,
        forecaster_class_name = getFromNamespace(paste(forecaster,"Forecaster",sep=""), "talweg")
        forecaster = forecaster_class_name$new( #.pjump =
                getFromNamespace(paste("get",pjump,"JumpPredict",sep=""), "talweg"))
-       for (today in integer_indices)
-       {
-               pred$append(
-                       new_serie = forecaster$predictSerie(data, today, memory, horizon, ...),
-                       new_params = forecaster$getParameters(),
-                       new_index_in_data = today
-               )
-       }
+
+#oo = forecaster$predictSerie(data, integer_indices[1], memory, horizon, ...)
+#browser()
+
+       library(parallel)
+       ppp <- parallel::mclapply(seq_along(integer_indices), function(i) {
+               list(
+                       "forecast" = forecaster$predictSerie(data, integer_indices[i], memory, horizon, ...),
+                       "params"= forecaster$getParameters(),
+                       "index" = integer_indices[i] )
+               }, mc.cores=3)
+
+#browser()
+
+for (i in seq_along(integer_indices))
+{
+       pred$append(
+                       new_serie = ppp[[i]]$forecast,
+                       new_params = ppp[[i]]$params,
+                       new_index_in_data = ppp[[i]]$index
+       )
+}
+
        pred
 }
index 3932639..aee6ad4 100644 (file)
@@ -2,9 +2,9 @@
 <h2>Introduction</h2>
 
 J'ai fait quelques essais dans différentes configurations pour la méthode "Neighbors"
-(la seule dont on a parlé).<br>Il semble que le mieux soit
+(la seule dont on a parlé) et sa variante récente appelée pour l'instant "Neighbors2".<br>
 
- * simtype="exo" ou "mix" : similarités exogènes avec/sans endogènes (fenêtre optimisée par VC)
+ * simtype="exo", "endo" ou "mix" : type de similarités (fenêtre optimisée par VC)
  * same_season=FALSE : les indices pour la validation croisée ne tiennent pas compte des saisons
  * mix_strategy="mult" : on multiplie les poids (au lieu d'en éteindre)
 
index 74d6880..899fbf6 100644 (file)
@@ -2,7 +2,10 @@
  "cells": [
   {
    "cell_type": "markdown",
-   "metadata": {},
+   "metadata": {
+    "deletable": true,
+    "editable": true
+   },
    "source": [
     "\n",
     "\n",
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "collapsed": false,
+    "deletable": true,
+    "editable": true
+   },
    "outputs": [],
    "source": [
     "library(talweg)\n",
     "\n",
     "ts_data = read.csv(system.file(\"extdata\",\"pm10_mesures_H_loc_report.csv\",package=\"talweg\"))\n",
     "exo_data = read.csv(system.file(\"extdata\",\"meteo_extra_noNAs.csv\",package=\"talweg\"))\n",
-    "data = getData(ts_data, exo_data, input_tz = \"Europe/Paris\", working_tz=\"Europe/Paris\",\n",
-    "\tpredict_at=7) #predict from P+1 to P+H included\n",
+    "# Predict from P+1 to P+H included\n",
+    "H = 17\n",
+    "data = getData(ts_data, exo_data, input_tz = \"GMT\", working_tz=\"GMT\", predict_at=7)\n",
     "\n",
     "indices_ch = seq(as.Date(\"2015-01-18\"),as.Date(\"2015-01-24\"),\"days\")\n",
     "indices_ep = seq(as.Date(\"2015-03-15\"),as.Date(\"2015-03-21\"),\"days\")\n",
-    "indices_np = seq(as.Date(\"2015-04-26\"),as.Date(\"2015-05-02\"),\"days\")\n"
+    "indices_np = seq(as.Date(\"2015-04-26\"),as.Date(\"2015-05-02\"),\"days\")"
    ]
   },
   {
    "cell_type": "markdown",
-   "metadata": {},
+   "metadata": {
+    "deletable": true,
+    "editable": true
+   },
    "source": [
     "\n",
     "\n",
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "collapsed": false,
+    "deletable": true,
+    "editable": true
+   },
    "outputs": [],
    "source": [
-    "p_nn_exo = computeForecast(data, indices_ch, \"Neighbors\", \"Neighbors\",\n",
-    "\thorizon=3, simtype=\"exo\")\n",
-    "p_nn_mix = computeForecast(data, indices_ch, \"Neighbors\", \"Neighbors\",\n",
-    "\thorizon=3, simtype=\"mix\")\n",
-    "p_az = computeForecast(data, indices_ch, \"Average\", \"Zero\",\n",
-    "\thorizon=3)\n",
-    "p_pz = computeForecast(data, indices_ch, \"Persistence\", \"Zero\",\n",
-    "\thorizon=3, same_day=TRUE)"
+    "reload(\"../pkg\")\n",
+    "p1 = computeForecast(data, indices_ch, \"Neighbors\", \"Zero\", horizon=H, simtype=\"exo\")\n",
+    "p2 = computeForecast(data, indices_ch, \"Neighbors\", \"Zero\", horizon=H, simtype=\"endo\")\n",
+    "p3 = computeForecast(data, indices_ch, \"Neighbors\", \"Zero\", horizon=H, simtype=\"mix\")\n",
+    "p4 = computeForecast(data, indices_ch, \"Neighbors2\", \"Zero\", horizon=H, simtype=\"exo\")\n",
+    "p5 = computeForecast(data, indices_ch, \"Neighbors2\", \"Zero\", horizon=H, simtype=\"endo\")\n",
+    "p6 = computeForecast(data, indices_ch, \"Neighbors2\", \"Zero\", horizon=H, simtype=\"mix\")\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "collapsed": false
+   },
+   "outputs": [],
+   "source": [
+    "e1 = computeError(data, p1, H)\n",
+    "e2 = computeError(data, p2, H)\n",
+    "e3 = computeError(data, p3, H)\n",
+    "e4 = computeError(data, p4, H)\n",
+    "e5 = computeError(data, p5, H)\n",
+    "e6 = computeError(data, p6, H)\n",
+    "plotError(list(e1,e2,e3,e4,e5,e6), cols=c(1,2,colors()[258], 4,5,6))"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "collapsed": false,
+    "deletable": true,
+    "editable": true
+   },
    "outputs": [],
    "source": [
     "e_nn_exo = computeError(data, p_nn_exo, 3)\n",
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "collapsed": false,
+    "deletable": true,
+    "editable": true
+   },
    "outputs": [],
    "source": [
     "options(repr.plot.width=9, repr.plot.height=4)\n",
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "collapsed": false,
+    "deletable": true,
+    "editable": true
+   },
    "outputs": [],
    "source": [
     "par(mfrow=c(1,2))\n",
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "collapsed": false,
+    "deletable": true,
+    "editable": true
+   },
    "outputs": [],
    "source": [
     "par(mfrow=c(1,2))\n",
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "collapsed": false,
+    "deletable": true,
+    "editable": true
+   },
    "outputs": [],
    "source": [
     "par(mfrow=c(1,2))\n",
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "collapsed": false,
+    "deletable": true,
+    "editable": true
+   },
    "outputs": [],
    "source": [
     "par(mfrow=c(1,2))\n",
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "collapsed": false,
+    "deletable": true,
+    "editable": true
+   },
    "outputs": [],
    "source": [
     "# Fenêtres sélectionnées dans ]0,10] / endo à gauche, exo à droite\n",
   },
   {
    "cell_type": "markdown",
-   "metadata": {},
+   "metadata": {
+    "deletable": true,
+    "editable": true
+   },
    "source": [
     "\n",
     "\n",
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "collapsed": false,
+    "deletable": true,
+    "editable": true
+   },
    "outputs": [],
    "source": [
     "p_nn_exo = computeForecast(data, indices_ep, \"Neighbors\", \"Neighbors\",\n",
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "collapsed": false,
+    "deletable": true,
+    "editable": true
+   },
    "outputs": [],
    "source": [
     "e_nn_exo = computeError(data, p_nn_exo, 3)\n",
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "collapsed": false,
+    "deletable": true,
+    "editable": true
+   },
    "outputs": [],
    "source": [
     "options(repr.plot.width=9, repr.plot.height=4)\n",
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "collapsed": false,
+    "deletable": true,
+    "editable": true
+   },
    "outputs": [],
    "source": [
     "par(mfrow=c(1,2))\n",
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "collapsed": false,
+    "deletable": true,
+    "editable": true
+   },
    "outputs": [],
    "source": [
     "par(mfrow=c(1,2))\n",
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "collapsed": false,
+    "deletable": true,
+    "editable": true
+   },
    "outputs": [],
    "source": [
     "par(mfrow=c(1,2))\n",
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "collapsed": false,
+    "deletable": true,
+    "editable": true
+   },
    "outputs": [],
    "source": [
     "par(mfrow=c(1,2))\n",
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "collapsed": false,
+    "deletable": true,
+    "editable": true
+   },
    "outputs": [],
    "source": [
     "# Fenêtres sélectionnées dans ]0,10] / endo à gauche, exo à droite\n",
   },
   {
    "cell_type": "markdown",
-   "metadata": {},
+   "metadata": {
+    "deletable": true,
+    "editable": true
+   },
    "source": [
     "\n",
     "\n",
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "collapsed": false,
+    "deletable": true,
+    "editable": true
+   },
    "outputs": [],
    "source": [
     "p_nn_exo = computeForecast(data, indices_np, \"Neighbors\", \"Neighbors\",\n",
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "collapsed": false,
+    "deletable": true,
+    "editable": true
+   },
    "outputs": [],
    "source": [
     "e_nn_exo = computeError(data, p_nn_exo, 3)\n",
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "collapsed": false,
+    "deletable": true,
+    "editable": true
+   },
    "outputs": [],
    "source": [
     "options(repr.plot.width=9, repr.plot.height=4)\n",
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "collapsed": false,
+    "deletable": true,
+    "editable": true
+   },
    "outputs": [],
    "source": [
     "par(mfrow=c(1,2))\n",
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "collapsed": false,
+    "deletable": true,
+    "editable": true
+   },
    "outputs": [],
    "source": [
     "par(mfrow=c(1,2))\n",
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "collapsed": false,
+    "deletable": true,
+    "editable": true
+   },
    "outputs": [],
    "source": [
     "par(mfrow=c(1,2))\n",
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "collapsed": false,
+    "deletable": true,
+    "editable": true
+   },
    "outputs": [],
    "source": [
     "par(mfrow=c(1,2))\n",
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "collapsed": false,
+    "deletable": true,
+    "editable": true
+   },
    "outputs": [],
    "source": [
     "# Fenêtres sélectionnées dans ]0,10] / endo à gauche, exo à droite\n",
   },
   {
    "cell_type": "markdown",
-   "metadata": {},
+   "metadata": {
+    "deletable": true,
+    "editable": true
+   },
    "source": [
     "\n",
     "\n",