A low-rank constraint could be added, computed for the Lasso-Rank procedure.
A collection of models is constructed, varying the level of sparsity and the
number of clusters, and a model is selected using a model selection criterion
- (slope heuristic, BIC or AIC). Details of the procedure are provided in 'Model-
- based clustering for high-dimensional data. Application to functional data' by
- Emilie Devijver, published in Advances in Data Analysis and Clustering (2016).
+ (slope heuristic, BIC or AIC). Details of the procedure are provided in
+ "Model-based clustering for high-dimensional data. Application to functional data"
+ by Emilie Devijver (2016) <arXiv:1409.1333v2>,
+ published in Advances in Data Analysis and Clustering.
Author: Benjamin Auder <benjamin.auder@universite-paris-saclay.fr> [aut,cre],
Emilie Devijver <Emilie.Devijver@kuleuven.be> [aut],
Benjamin Goehry <Benjamin.Goehry@math.u-psud.fr> [ctb]
+#' initSmallEM
+#'
#' initialization of the EM algorithm
#'
#' @param k number of components
#' @return a list with phiInit, rhoInit, piInit, gamInit
#'
#' @importFrom stats cutree dist hclust runif
+#'
#' @export
initSmallEM <- function(k, X, Y, fast)
{
utils::globalVariables(c("Var1","Var2","X1","X2","value")) #, package="valse")
+
#' Plot
#'
-#' It is a function which plots relevant parameters
+#' A function which plots relevant parameters.
#'
#' @param X matrix of covariates (of size n*p)
#' @param Y matrix of responses (of size n*m)
#' @importFrom cowplot background_grid
#' @importFrom reshape2 melt
#'
+#' @return No return value (only plotting).
+#'
#' @export
plot_valse <- function(X, Y, model, comp = FALSE, k1 = NA, k2 = NA)
{