mod = as.character(tableauRecap[indModSel,1])
listMod = as.integer(unlist(strsplit(mod, "[.]")))
if (plot){
- print(plot_valse())
+ print(plot_valse(models_list[[listMod[1]]][[listMod[2]]],n))
}
models_list[[listMod[1]]][[listMod[2]]]
#'
#' It is a function which plots relevant parameters
#'
-#'
+#' @param model the model constructed by valse procedure
+#' @param n sample size
#' @return several plots
#'
#' @examples TODO
#'
#' @export
#'
-plot_valse = function(){
+plot_valse = function(model,n){
require("gridExtra")
require("ggplot2")
require("reshape2")
+ require("cowplot")
+ K = length(model$pi)
## regression matrices
gReg = list()
for (r in 1:K){
gam2[i, ] = c(gam[i, affec[i]], affec[i])
}
bp <- ggplot(data.frame(gam2), aes(x=X2, y=X1, color=X2, group = X2)) +
- geom_boxplot() + theme(legend.position = "none")
- print(bp + background_grid(major = "xy", minor = "none"))
+ geom_boxplot() + theme(legend.position = "none")+ background_grid(major = "xy", minor = "none")
+ print(bp )
### Mean in each cluster
XY = cbind(X,Y)