#' EMGLLF
#'
-#' Run a generalized EM algorithm developped for mixture of Gaussian regression
+#' Run a generalized EM algorithm developped for mixture of Gaussian regression
#' models with variable selection by an extension of the Lasso estimator (regularization parameter lambda).
#' Reparametrization is done to ensure invariance by homothetic transformation.
#' It returns a collection of models, varying the number of clusters and the sparsity in the regression mean.
#' EMGrank
#'
-#' Run an generalized EM algorithm developped for mixture of Gaussian regression
+#' Run an generalized EM algorithm developped for mixture of Gaussian regression
#' models with variable selection by an extension of the low rank estimator.
#' Reparametrization is done to ensure invariance by homothetic transformation.
#' It returns a collection of models, varying the number of clusters and the rank of the regression mean.
# Yes, we should use by-columns storage everywhere... [later!]
matricize <- function(X)
{
- if (!is.matrix(X))
+ if (!is.matrix(X))
return(t(as.matrix(X)))
- return(X)
+ X
}
# R version - slow but easy to read
for (r in 1:k)
{
Z_indice <- seq_len(n)[Z == r] #indices where Z == r
- if (length(Z_indice) == 0)
+ if (length(Z_indice) == 0)
next
# U,S,V = SVD of (t(Xr)Xr)^{-1} * t(Xr) * Yr
- s <- svd(MASS::ginv(crossprod(matricize(X[Z_indice, ]))) %*%
- crossprod(matricize(X[Z_indice, ]), matricize(Y[Z_indice, ])))
+ s <- svd(MASS::ginv(crossprod(matricize(X[Z_indice, ]))) %*%
+ crossprod(matricize(X[Z_indice, ]), matricize(Y[Z_indice, ])))
S <- s$d
# Set m-rank(r) singular values to zero, and recompose best rank(r) approximation
# of the initial product
- if (rank[r] < length(S))
+ if (rank[r] < length(S))
S[(rank[r] + 1):length(S)] <- 0
phi[, , r] <- s$u %*% diag(S) %*% t(s$v) %*% Rho[, , r]
}
# update distance parameter to check algorithm convergence (delta(phi, Phi))
deltaPhi <- c(deltaPhi, max((abs(phi - Phi))/(1 + abs(phi)))) #TODO: explain?
- if (length(deltaPhi) > deltaPhiBufferSize)
+ if (length(deltaPhi) > deltaPhiBufferSize)
deltaPhi <- deltaPhi[2:length(deltaPhi)]
sumDeltaPhi <- sum(abs(deltaPhi))
Phi <- phi
ite <- ite + 1
}
- return(list(phi = phi, LLF = LLF))
+ list(phi = phi, LLF = LLF)
}
piInit <- piInit1[b, ]
gamInit <- gamInit1[, , b]
- return(list(phiInit = phiInit, rhoInit = rhoInit, piInit = piInit, gamInit = gamInit))
+ list(phiInit = phiInit, rhoInit = rhoInit, piInit = piInit, gamInit = gamInit)
}
modelSel$tableau <- tableauRecap
if (plot)
- print(plot_valse(X, Y, modelSel, n))
+ print(plot_valse(X, Y, modelSel))
return(modelSel)
}
#' @param X matrix of covariates (of size n*p)
#' @param Y matrix of responses (of size n*m)
#' @param model the model constructed by valse procedure
-#' @param n sample size
#' @param comp TRUE to enable pairwise clusters comparison
#' @param k1 index of the first cluster to be compared
#' @param k2 index of the second cluster to be compared
#' @importFrom reshape2 melt
#'
#' @export
-plot_valse <- function(X, Y, model, n, comp = FALSE, k1 = NA, k2 = NA)
+plot_valse <- function(X, Y, model, comp = FALSE, k1 = NA, k2 = NA)
{
+ n <- nrow(X)
K <- length(model$pi)
## regression matrices
gReg <- list()
#' selectVariables
#'
-#' It is a function which constructs, for a given lambda, the sets for each cluster of relevant variables.
+#' For a given lambda, construct the sets of relevant variables for each cluster.
#'
#' @param phiInit an initial estimator for phi (size: p*m*k)
#' @param rhoInit an initial estimator for rho (size: m*m*k)
if (ncores > 1)
parallel::stopCluster(cl)
- print(out)
- # Suppress models which are computed twice
+ print(out) #DEBUG TRACE
+ # Suppress models which are computed twice
# sha1_array <- lapply(out, digest::sha1) out[ duplicated(sha1_array) ]
selec <- lapply(out, function(model) model$selected)
ind_dup <- duplicated(selec)