Z_vec = Z_bin$vec #vecteur 0 et 1 aux endroits o? Z==r
Z_indice = Z_bin$indice #renvoit les indices o? Z==r
- betaInit1[,,r,repet] = ginv(t(X[Z_indice,])%*%X[Z_indice,])%*%t(X[Z_indice,])%*%Y[Z_indice,]
+ betaInit1[,,r,repet] = ginv(t(X[Z_indice,])*X[Z_indice,])%*%t(X[Z_indice,])%*%Y[Z_indice,]
sigmaInit1[,,r,repet] = diag(m)
- phiInit1[,,r,repet] = betaInit1[,,r,repet]#/sigmaInit1[,,r,repet]
+ phiInit1[,,r,repet] = betaInit1[,,r,repet]/sigmaInit1[,,r,repet]
rhoInit1[,,r,repet] = solve(sigmaInit1[,,r,repet])
piInit1[repet,r] = sum(Z_vec)/n
}
{
for(r in 1:k)
{
- dotProduct = 3 #(Y[i,]%*%rhoInit1[,,r,repet]-X[i,]%*%phiInit1[,,r,repet]) %*% (Y[i,]%*%rhoInit1[,,r,repet]-X[i,]%*%phiInit1[,,r,repet])
+ dotProduct = 3 * (Y[i,]%*%rhoInit1[,,r,repet]-X[i,]%*%phiInit1[,,r,repet]) %*% (Y[i,]%*%rhoInit1[,,r,repet]-X[i,]%*%phiInit1[,,r,repet])
Gam[i,r] = piInit1[repet,r]*det(rhoInit1[,,r,repet])*exp(-0.5*dotProduct)
}
sumGamI = sum(Gam[i,])