}
})
-# TODO: test computeW
-# computeW = function(θ)
-# {
-# require(MASS)
-# dd <- d + d^2 + d^3
-# M <- Moments(θ)
-# Id <- as.double(diag(d))
-# E <- diag(d)
-# v1 <- Y * X
-# v2 <- Y * t( apply(X, 1, function(Xi) Xi %o% Xi - Id) )
-# v3 <- Y * t( apply(X, 1, function(Xi) { return (Xi %o% Xi %o% Xi
-# - Reduce('+', lapply(1:d, function(j) as.double(Xi %o% E[j,] %o% E[j,])), rep(0, d*d*d))
-# - Reduce('+', lapply(1:d, function(j) as.double(E[j,] %o% Xi %o% E[j,])), rep(0, d*d*d))
-# - Reduce('+', lapply(1:d, function(j) as.double(E[j,] %o% E[j,] %o% Xi)), rep(0, d*d*d))) } ) )
-# Wtmp <- matrix(0, nrow=dd, ncol=dd)
-#
-#
-#g <- matrix(nrow=n, ncol=dd); for (i in 1:n) g[i,] = c(v1[i,], v2[i,], v3[i,]) - M
-#
-#
-#
-#
-#
-#
-# p <- θ$p
-# β <- θ$β
-# b <- θ$b
-#
-#
-#
-#
-## # Random generation of the size of each population in X~Y (unordered)
-## classes <- rmultinom(1, n, p)
-##
-## #d <- nrow(β)
-## zero_mean <- rep(0,d)
-## id_sigma <- diag(rep(1,d))
-## X <- matrix(nrow=0, ncol=d)
-## Y <- c()
-## for (i in 1:ncol(β)) #K = ncol(β)
-## {
-## newXblock <- MASS::mvrnorm(classes[i], zero_mean, id_sigma)
-## arg_link <- newXblock %*% β[,i] + b[i]
-## probas <-
-## if (li == "logit")
-## {
-## e_arg_link = exp(arg_link)
-## e_arg_link / (1 + e_arg_link)
-## }
-## else #"probit"
-## pnorm(arg_link)
-## probas[is.nan(probas)] <- 1 #overflow of exp(x)
-## X <- rbind(X, newXblock)
-## Y <- c( Y, vapply(probas, function(p) (rbinom(1,1,p)), 1) )
-## }
-#
-#
-#
-#
-#
-#
-#
-#
-# Mhatt <- c(
-# colMeans(Y * X),
-# colMeans(Y * t( apply(X, 1, function(Xi) Xi %o% Xi - Id) )),
-# colMeans(Y * t( apply(X, 1, function(Xi) { return (Xi %o% Xi %o% Xi
-# - Reduce('+', lapply(1:d, function(j) as.double(Xi %o% E[j,] %o% E[j,])), rep(0, d*d*d))
-# - Reduce('+', lapply(1:d, function(j) as.double(E[j,] %o% Xi %o% E[j,])), rep(0, d*d*d))
-# - Reduce('+', lapply(1:d, function(j) as.double(E[j,] %o% E[j,] %o% Xi)), rep(0, d*d*d))) } ) ) ))
-# λ <- sqrt(colSums(β^2))
-# β2 <- apply(β, 2, function(col) col %o% col)
-# β3 <- apply(β, 2, function(col) col %o% col %o% col)
-# M <- c(
-# β %*% (p * .G(li,1,λ,b)),
-# β2 %*% (p * .G(li,2,λ,b)),
-# β3 %*% (p * .G(li,3,λ,b)) )
-# print(sum(abs(Mhatt - M)))
-#
-#save(list=c("X", "Y"), file="v2.RData")
-#
-#
-#
-#
-#browser()
-# for (i in 1:n)
-# {
-# gi <- t(as.matrix(c(v1[i,], v2[i,], v3[i,]) - M))
-# Wtmp <- Wtmp + t(gi) %*% gi / n
-# }
-# Wtmp
-# #MASS::ginv(Wtmp)
-# },
-#
-# #TODO: compare with R version?
-# computeW_orig = function(θ)
-# {
-# require(MASS)
-# dd <- d + d^2 + d^3
-# M <- Moments(θ)
-# Omega <- matrix( .C("Compute_Omega",
-# X=as.double(X), Y=as.double(Y), M=as.double(M),
-# pn=as.integer(n), pd=as.integer(d),
-# W=as.double(W), PACKAGE="morpheus")$W, nrow=dd, ncol=dd )
-# Omega
-# #MASS::ginv(Omega) #, tol=1e-4)
-# },
-#
-# Moments = function(θ)
-# {
-# "Vector of moments, of size d+d^2+d^3"
-#
-# p <- θ$p
-# β <- θ$β
-# λ <- sqrt(colSums(β^2))
-# b <- θ$b
-#
-# # Tensorial products β^2 = β2 and β^3 = β3 must be computed from current β1
-# β2 <- apply(β, 2, function(col) col %o% col)
-# β3 <- apply(β, 2, function(col) col %o% col %o% col)
-#
-# c(
-# β %*% (p * .G(li,1,λ,b)),
-# β2 %*% (p * .G(li,2,λ,b)),
-# β3 %*% (p * .G(li,3,λ,b)))
-# },
-#
+test_that("W computed in C and in R are the same",
+{
+ # TODO: provide data X,Y + parameters theta
+ dd <- d + d^2 + d^3
+ p <- θ$p
+ β <- θ$β
+ λ <- sqrt(colSums(β^2))
+ b <- θ$b
+ β2 <- apply(β, 2, function(col) col %o% col)
+ β3 <- apply(β, 2, function(col) col %o% col %o% col)
+ M <- c(
+ β %*% (p * .G(li,1,λ,b)),
+ β2 %*% (p * .G(li,2,λ,b)),
+ β3 %*% (p * .G(li,3,λ,b)))
+ Id <- as.double(diag(d))
+ E <- diag(d)
+ v1 <- Y * X
+ v2 <- Y * t( apply(X, 1, function(Xi) Xi %o% Xi - Id) )
+ v3 <- Y * t( apply(X, 1, function(Xi) { return (Xi %o% Xi %o% Xi
+ - Reduce('+', lapply(1:d, function(j) as.double(Xi %o% E[j,] %o% E[j,])), rep(0, d*d*d))
+ - Reduce('+', lapply(1:d, function(j) as.double(E[j,] %o% Xi %o% E[j,])), rep(0, d*d*d))
+ - Reduce('+', lapply(1:d, function(j) as.double(E[j,] %o% E[j,] %o% Xi)), rep(0, d*d*d))) } ) )
+ Omega1 <- matrix(0, nrow=dd, ncol=dd)
+ for (i in 1:n)
+ {
+ gi <- t(as.matrix(c(v1[i,], v2[i,], v3[i,]) - M))
+ Omega1 <- Omega1 + t(gi) %*% gi / n
+ }
+ Omega2 <- matrix( .C("Compute_Omega",
+ X=as.double(X), Y=as.double(Y), M=as.double(M),
+ pn=as.integer(n), pd=as.integer(d),
+ W=as.double(W), PACKAGE="morpheus")$W, nrow=dd, ncol=dd )
+ rg <- range(Omega1 - Omega2)
+ expect_that(rg[2] - rg[1] <= 1e8)
+})