-oneIteration = function(..........)
+# Cluster one full task (nb_curves / ntasks series)
+clusteringTask = function(K1, K2, WER, nb_series_per_chunk, indices_tasks, ncores_clust)
{
- cl_clust = parallel::makeCluster(ncores_clust)
- parallel::clusterExport(cl_clust, .............., envir=........)
- indices_clust = indices_task[[i]]
- repeat
+ cl_clust = parallel::makeCluster(ncores_clust)
+ #parallel::clusterExport(cl=cl_clust, varlist=c("fonctions_du_package"), envir=environment())
+ indices_clust = indices_task[[i]]
+ repeat
+ {
+ nb_workers = max( 1, round( length(indices_clust) / nb_series_per_chunk ) )
+ indices_workers = list()
+ for (i in 1:nb_workers)
{
- nb_workers = max( 1, round( length(indices_clust) / nb_series_per_chunk ) )
- indices_workers = list()
- #indices[[i]] == (start_index,number_of_elements)
- for (i in 1:nb_workers)
- {
- upper_bound = ifelse( i<nb_workers,
- min(nb_series_per_chunk*i,length(indices_clust)), length(indices_clust) )
- indices_workers[[i]] = indices_clust[(nb_series_per_chunk*(i-1)+1):upper_bound]
- }
- indices_clust = parallel::parSapply(cl, indices_workers, processChunk, K1, K2*(WER=="mix"))
- if ( (WER=="end" && length(indices_clust) == K1) ||
- (WER=="mix" && length(indices_clust) == K2) )
- {
- break
- }
+ upper_bound = ifelse( i<nb_workers,
+ min(nb_series_per_chunk*i,length(indices_clust)), length(indices_clust) )
+ indices_workers[[i]] = indices_clust[(nb_series_per_chunk*(i-1)+1):upper_bound]
}
- parallel::stopCluster(cl_clust)
- res_clust
+ indices_clust = parallel::parLapply(cl, indices_workers, clusterChunk, K1, K2*(WER=="mix"))
+ if ((WER=="end" && length(indices_clust)==K1) || (WER=="mix" && length(indices_clust)==K2))
+ break
+ }
+ parallel::stopCluster(cl_clust)
+ unlist(indices_clust)
}
-processChunk = function(indices, K1, K2)
+# Cluster a chunk of series inside one task (~max nb_series_per_chunk)
+clusterChunk = function(indices, K1, K2)
{
- #1) retrieve data (coeffs)
coeffs = getCoeffs(indices)
- #2) cluster
- cl = computeClusters(as.matrix(coeffs[,2:ncol(coeffs)]), K1)
- #3) WER (optional)
+ cl = computeClusters(as.matrix(coeffs[,2:ncol(coeffs)]), K1, diss=FALSE)
if (K2 > 0)
{
curves = computeSynchrones(cl)
dists = computeWerDists(curves)
- cl = computeClusters(dists, K2)
+ cl = computeClusters(dists, K2, diss=TRUE)
}
- cl
+ indices[cl]
}
-computeClusters = function(data, K)
+# Apply the clustering algorithm (PAM) on a coeffs or distances matrix
+computeClusters = function(md, K, diss)
{
- library(cluster)
- pam_output = cluster::pam(data, K)
- return ( list( clusts=pam_output$clustering, medoids=pam_output$medoids,
- ranks=pam_output$id.med ) )
+ if (!require(cluster, quietly=TRUE))
+ stop("Unable to load cluster library")
+ cluster::pam(md, K, diss=diss)$id.med
}
-#TODO: appendCoeffs() en C --> serialize et append to file
-
-computeSynchrones = function(...)
+# Compute the synchrones curves (sum of clusters elements) from a clustering result
+computeSynchrones = function(indices)
{
-
+ colSums( getData(indices) )
}
-#Entrée : courbes synchrones, soit après étape 1 itérée, soit après chaqure étape 1
-computeWerDist = function(conso)
+# Compute the WER distance between the synchrones curves
+computeWerDist = function(curves)
{
if (!require("Rwave", quietly=TRUE))
stop("Unable to load Rwave library")
- n <- nrow(conso)
- delta <- ncol(conso)
+ n <- nrow(curves)
+ delta <- ncol(curves)
#TODO: automatic tune of all these parameters ? (for other users)
nvoice <- 4
- # noctave = 2^13 = 8192 half hours ~ 180 days ; ~log2(ncol(conso))
+ # noctave = 2^13 = 8192 half hours ~ 180 days ; ~log2(ncol(curves))
noctave = 13
# 4 here represent 2^5 = 32 half-hours ~ 1 day
#NOTE: default scalevector == 2^(0:(noctave * nvoice) / nvoice) * s0 (?)
# (normalized) observations node with CWT
Xcwt4 <- lapply(seq_len(n), function(i) {
- ts <- scale(ts(conso[i,]), center=TRUE, scale=scaled)
+ ts <- scale(ts(curves[i,]), center=TRUE, scale=scaled)
totts.cwt = Rwave::cwt(ts,totnoct,nvoice,w0,plot=0)
ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)]
#Normalization
epclust = function(data, K1, K2, ntasks=1, nb_series_per_chunk=50*K1, min_series_per_chunk=5*K1,
wf="haar", WER="end", ncores_tasks=1, ncores_clust=4, random=TRUE)
{
- #0) check arguments
+ # Check arguments
if (!is.data.frame(data) && !is.function(data))
{
tryCatch(
if (WER!="end" && WER!="mix")
stop("WER takes values in {'end','mix'}")
- #1) Serialize all wavelets coefficients (+ IDs) onto a file
+ # Serialize all wavelets coefficients (+ IDs) onto a file
coeffs_file = ".coeffs"
index = 1
nb_curves = 0
nb_coeffs = ncol(coeffs_chunk)-1
}
-# finalizeSerialization(coeffs_file) ........, nb_curves, )
-#TODO: is it really useful ?! we will always have these informations (nb_curves, nb_coeffs)
-
if (nb_curves < min_series_per_chunk)
stop("Not enough data: less rows than min_series_per_chunk!")
nb_series_per_task = round(nb_curves / ntasks)
if (nb_series_per_task < min_series_per_chunk)
stop("Too many tasks: less series in one task than min_series_per_chunk!")
- #2) Cluster coefficients in parallel (by nb_series_per_chunk)
- # All indices, relative to complete dataset
- indices = if (random) sample(nb_curves) else seq_len(nb_curves)
- # Indices to be processed in each task
- indices_tasks = list()
+ # Cluster coefficients in parallel (by nb_series_per_chunk)
+ indices = if (random) sample(nb_curves) else seq_len(nb_curves) #all indices
+ indices_tasks = list() #indices to be processed in each task
for (i in seq_len(ntasks))
{
upper_bound = ifelse( i<ntasks, min(nb_series_per_task*i,nb_curves), nb_curves )
}
library(parallel, quietly=TRUE)
cl_tasks = parallel::makeCluster(ncores_tasks)
- parallel::clusterExport(cl_tasks, ..........ncores_clust, indices_tasks, nb_series_per_chunk, processChunk, K1,
- K2, WER, )
- ranks = parallel::parSapply(cl_tasks, seq_along(indices_tasks), oneIteration)
+ #parallel::clusterExport(cl=cl_tasks, varlist=c("ncores_clust", ...), envir=environment())
+ indices = parallel::parLapply(cl_tasks, indices_tasks, clusteringStep12, )
parallel::stopCluster(cl_tasks)
- #3) Run step1+2 step on resulting ranks
- ranks = oneIteration(.........)
+##TODO: passer data ?!
+
+ # Run step1+2 step on resulting ranks
+ ranks = clusteringStep12()
return (list("ranks"=ranks, "medoids"=getSeries(data, ranks)))
}