m <- synchronicity::attach.mutex(m_desc)
}
-
-
-#TODO: use dbs(),
- #https://www.r-bloggers.com/debugging-parallel-code-with-dbs/
- #http://gforge.se/2015/02/how-to-go-parallel-in-r-basics-tips/
-
-#OK ::
-#write(length(indices), file="TOTO")
-#write( computeMedoidsIndices(medoids@address, getRefSeries(indices[1:600])), file="TOTO")
-#stop()
-
-# write(indices, file="TOTO", ncolumns=10, append=TRUE)
-#write("medoids", file = "TOTO", ncolumns=1, append=TRUE)
-#write(medoids[1,1:3], file = "TOTO", ncolumns=1, append=TRUE)
-#write("synchrones", file = "TOTO", ncolumns=1, append=TRUE)
-#write(synchrones[1,1:3], file = "TOTO", ncolumns=1, append=TRUE)
-
-#NOT OK :: (should just be "ref_series") ...or yes ? race problems mutex then ? ?!
#get medoids indices for this chunk of series
- mi = computeMedoidsIndices(medoids@address, getRefSeries(indices[1:600])) #ref_series)
-write("MI ::::", file = "TOTO", ncolumns=1, append=TRUE)
-write(mi[1:3], file = "TOTO", ncolumns=1, append=TRUE)
-
+ mi = computeMedoidsIndices(medoids@address, ref_series)
# #R-equivalent, requiring a matrix (thus potentially breaking "fit-in-memory" hope)
# mat_meds = medoids[,]
# mi = rep(NA,nb_series)
if (parll)
synchronicity::lock(m)
synchrones[mi[i],] = synchrones[mi[i],] + ref_series[i,]
+#TODO: remove counts
counts[mi[i],1] = counts[mi[i],1] + 1
if (parll)
synchronicity::unlock(m)
# Distance between rows i and j
computeDistancesIJ = function(pair)
{
- require("bigmemory", quietly=TRUE)
- require("epclust", quietly=TRUE)
- synchrones <- bigmemory::attach.big.matrix(synchrones_desc)
- Xwer_dist <- bigmemory::attach.big.matrix(Xwer_dist_desc)
-
- computeCWT = function(i)
+ if (parll)
{
- ts <- scale(ts(synchrones[i,]), center=TRUE, scale=scaled)
+ require("bigmemory", quietly=TRUE)
+ require("epclust", quietly=TRUE)
+ synchrones <- bigmemory::attach.big.matrix(synchrones_desc)
+ Xwer_dist <- bigmemory::attach.big.matrix(Xwer_dist_desc)
+ }
+
+ computeCWT = function(index)
+ {
+ ts <- scale(ts(synchrones[index,]), center=TRUE, scale=scaled)
totts.cwt = Rwave::cwt(ts, totnoct, nvoice, w0, plot=FALSE)
ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)]
#Normalization
sqres <- sweep(ts.cwt,2,sqs,'*')
sqres / max(Mod(sqres))
}
-
+#browser()
i = pair[1] ; j = pair[2]
if (verbose && j==i+1)
cat(paste(" Distances (",i,",",j,"), (",i,",",j+1,") ...\n", sep=""))
- cwt_i = computeCWT(i)
- cwt_j = computeCWT(j)
+print(system.time( { cwt_i <- computeCWT(i)
+ cwt_j <- computeCWT(j) } ))
+
+print(system.time( {
num <- epclustFilter(Mod(cwt_i * Conj(cwt_j)))
WX <- epclustFilter(Mod(cwt_i * Conj(cwt_i)))
WY <- epclustFilter(Mod(cwt_j * Conj(cwt_j)))
wer2 <- sum(colSums(num)^2) / sum(colSums(WX) * colSums(WY))
- Xwer_dist[i,j] <- sqrt(delta * ncol(cwt_i) * (1 - wer2))
+ Xwer_dist[i,j] <- sqrt(delta * ncol(cwt_i) * max(1 - wer2, 0.)) #FIXME: wer2 should be < 1
Xwer_dist[j,i] <- Xwer_dist[i,j]
+} ) )
Xwer_dist[i,i] = 0.
}
{
cl = parallel::makeCluster(ncores_clust)
synchrones_desc <- bigmemory::describe(synchrones)
- Xwer_dist_desc_desc <- bigmemory::describe(Xwer_dist)
+ Xwer_dist_desc <- bigmemory::describe(Xwer_dist)
parallel::clusterExport(cl, varlist=c("synchrones_desc","Xwer_dist_desc","totnoct",
"nvoice","w0","s0log","noctave","s0","verbose"), envir=environment())
}
-
+browser()
ignored <-
if (parll)
parallel::parLapply(cl, pairs, computeDistancesIJ)
if (parll)
parallel::stopCluster(cl)
-
+#browser()
Xwer_dist[n,n] = 0.
distances <- Xwer_dist[,]
rm(Xwer_dist) ; gc()