Refresh package, suppress what we won't do right now. Focus on doc + debug
authorBenjamin Auder <benjamin.auder@somewhere>
Sat, 11 Jan 2020 17:26:14 +0000 (18:26 +0100)
committerBenjamin Auder <benjamin.auder@somewhere>
Sat, 11 Jan 2020 17:26:14 +0000 (18:26 +0100)
18 files changed:
pkg/DESCRIPTION
pkg/LICENSE
pkg/R/EMGLLF.R
pkg/R/computeGridLambda.R
pkg/R/constructionModelesLassoMLE.R
pkg/R/constructionModelesLassoRank.R
pkg/R/generateXY.R
pkg/R/initSmallEM.R
pkg/R/main.R
pkg/R/plot_valse.R
pkg/R/selectVariables.R
pkg/R/util.R
pkg/inst/testdata/TODO.csv [deleted file]
pkg/src/sources/EMGLLF.c
pkg/tests/testthat.R [deleted file]
pkg/tests/testthat/helper-context1.R [deleted file]
pkg/tests/testthat/test-context1.R [deleted file]
pkg/vignettes/.gitignore [deleted file]

index 72723c0..65ed448 100644 (file)
@@ -1,6 +1,6 @@
 Package: valse
 Title: Variable Selection With Mixture Of Models
-Date: 2016-12-01
+Date: 2020-01-11
 Version: 0.1-0
 Description: Two methods are implemented to cluster data with finite mixture
     regression models. Those procedures deal with high-dimensional covariates and
@@ -11,12 +11,12 @@ Description: Two methods are implemented to cluster data with finite mixture
     (slope heuristic, BIC or AIC). Details of the procedure are provided in 'Model-
     based clustering for high-dimensional data. Application to functional data' by
     Emilie Devijver, published in Advances in Data Analysis and Clustering (2016).
-Author: Benjamin Auder <Benjamin.Auder@math.u-psud.fr> [aut,cre],
+Author: Benjamin Auder <benjamin.auder@universite-paris-saclay.fr> [aut,cre],
     Emilie Devijver <Emilie.Devijver@kuleuven.be> [aut],
     Benjamin Goehry <Benjamin.Goehry@math.u-psud.fr> [aut]
-Maintainer: Benjamin Auder <Benjamin.Auder@math.u-psud.fr>
+Maintainer: Benjamin Auder <benjamin.auder@universite-paris-saclay.fr>
 Depends:
-    R (>= 3.0.0)
+    R (>= 3.5.0)
 Imports:
     MASS,
     parallel
index a212458..ccb78c4 100644 (file)
@@ -1,23 +1,2 @@
-Copyright (c)
-  2014-2017, Benjamin Auder
-       2014-2017, Emilie Devijver
-       2016-2017, Benjamin Goehry
-
-Permission is hereby granted, free of charge, to any person obtaining
-a copy of this software and associated documentation files (the
-"Software"), to deal in the Software without restriction, including
-without limitation the rights to use, copy, modify, merge, publish,
-distribute, sublicense, and/or sell copies of the Software, and to
-permit persons to whom the Software is furnished to do so, subject to
-the following conditions:
-
-The above copyright notice and this permission notice shall be
-included in all copies or substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
-MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
-LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
-OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
-WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+YEAR: 2014-2020
+COPYRIGHT HOLDER: Benjamin Auder, Emilie Devijver, Benjamin Goehry
index 57638f9..c30b023 100644 (file)
@@ -1,4 +1,4 @@
-#' EMGLLF 
+#' EMGLLF
 #'
 #' Description de EMGLLF
 #'
 #'   affec : ...
 #'
 #' @export
-EMGLLF <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, 
+EMGLLF <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda,
   X, Y, eps, fast)
 {
   if (!fast)
   {
     # Function in R
-    return(.EMGLLF_R(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, 
+    return(.EMGLLF_R(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda,
       X, Y, eps))
   }
 
@@ -38,14 +38,14 @@ EMGLLF <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda,
   p <- ncol(X)  #nombre de covariables
   m <- ncol(Y)  #taille de Y (multivarié)
   k <- length(piInit)  #nombre de composantes dans le mélange
-  .Call("EMGLLF", phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, 
-    X, Y, eps, phi = double(p * m * k), rho = double(m * m * k), pi = double(k), 
-    llh = double(1), S = double(p * m * k), affec = integer(n), n, p, m, k, 
+  .Call("EMGLLF", phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda,
+    X, Y, eps, phi = double(p * m * k), rho = double(m * m * k), pi = double(k),
+    llh = double(1), S = double(p * m * k), affec = integer(n), n, p, m, k,
     PACKAGE = "valse")
 }
 
 # R version - slow but easy to read
-.EMGLLF_R <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, 
+.EMGLLF_R <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda,
   X, Y, eps)
 {
   # Matrix dimensions
index ac0788a..f087ba7 100644 (file)
@@ -1,4 +1,4 @@
-#' computeGridLambda 
+#' computeGridLambda
 #'
 #' Construct the data-driven grid for the regularization parameters used for the Lasso estimator
 #'
@@ -16,7 +16,7 @@
 #' @return the grid of regularization parameters
 #'
 #' @export
-computeGridLambda <- function(phiInit, rhoInit, piInit, gamInit, X, Y, gamma, mini, 
+computeGridLambda <- function(phiInit, rhoInit, piInit, gamInit, X, Y, gamma, mini,
   maxi, eps, fast)
 {
   n <- nrow(X)
@@ -24,7 +24,7 @@ computeGridLambda <- function(phiInit, rhoInit, piInit, gamInit, X, Y, gamma, mi
   m <- ncol(Y)
   k <- length(piInit)
 
-  list_EMG <- EMGLLF(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda = 0, 
+  list_EMG <- EMGLLF(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda = 0,
     X, Y, eps, fast)
 
   grid <- array(0, dim = c(p, m, k))
index d2a16bc..2d04adb 100644 (file)
@@ -1,7 +1,7 @@
-#' constructionModelesLassoMLE 
+#' constructionModelesLassoMLE
 #'
 #' Construct a collection of models with the Lasso-MLE procedure.
-#' 
+#'
 #' @param phiInit an initialization for phi, get by initSmallEM.R
 #' @param rhoInit an initialization for rho, get by initSmallEM.R
 #' @param piInit an initialization for pi, get by initSmallEM.R
 #' @param ncores Number of cores, by default = 3
 #' @param fast TRUE to use compiled C code, FALSE for R code only
 #' @param verbose TRUE to show some execution traces
-#' 
+#'
 #' @return a list with several models, defined by phi, rho, pi, llh
 #'
 #' @export
-constructionModelesLassoMLE <- function(phiInit, rhoInit, piInit, gamInit, mini, 
+constructionModelesLassoMLE <- function(phiInit, rhoInit, piInit, gamInit, mini,
   maxi, gamma, X, Y, eps, S, ncores = 3, fast, verbose)
 {
   if (ncores > 1)
   {
     cl <- parallel::makeCluster(ncores, outfile = "")
-    parallel::clusterExport(cl, envir = environment(), varlist = c("phiInit", 
-      "rhoInit", "gamInit", "mini", "maxi", "gamma", "X", "Y", "eps", "S", 
+    parallel::clusterExport(cl, envir = environment(), varlist = c("phiInit",
+      "rhoInit", "gamInit", "mini", "maxi", "gamma", "X", "Y", "eps", "S",
       "ncores", "fast", "verbose"))
   }
 
   # Individual model computation
   computeAtLambda <- function(lambda)
   {
-    if (ncores > 1) 
+    if (ncores > 1)
       require("valse")  #nodes start with an empty environment
 
-    if (verbose) 
+    if (verbose)
       print(paste("Computations for lambda=", lambda))
 
     n <- nrow(X)
@@ -47,7 +47,7 @@ constructionModelesLassoMLE <- function(phiInit, rhoInit, piInit, gamInit, mini,
     sel.lambda <- S[[lambda]]$selected
     # col.sel = which(colSums(sel.lambda)!=0) #if boolean matrix
     col.sel <- which(sapply(sel.lambda, length) > 0)  #if list of selected vars
-    if (length(col.sel) == 0) 
+    if (length(col.sel) == 0)
       return(NULL)
 
     # lambda == 0 because we compute the EMV: no penalization here
@@ -88,7 +88,7 @@ constructionModelesLassoMLE <- function(phiInit, rhoInit, piInit, gamInit, mini,
     #     log(piLambda[r]) + log(detRho[r]) - 0.5 *
     #       sum((Y[i, ] %*% rhoLambda[, , r] - X[i, ] %*% phiLambda[, , r])^2)
     #   })
-    #   
+    #
     #   #logGam <- logGam - max(logGam) #adjust without changing proportions -> change the LLH
     #   gam <- exp(logGam)
     #   norm_fact <- sum(gam)
@@ -106,7 +106,7 @@ constructionModelesLassoMLE <- function(phiInit, rhoInit, piInit, gamInit, mini,
       lapply(1:length(S), computeAtLambda)
     }
 
-  if (ncores > 1) 
+  if (ncores > 1)
     parallel::stopCluster(cl)
 
   out
index dc88f67..9df8168 100644 (file)
@@ -18,7 +18,7 @@
 #' @return a list with several models, defined by phi, rho, pi, llh
 #'
 #' @export
-constructionModelesLassoRank <- function(S, k, mini, maxi, X, Y, eps, rank.min, rank.max, 
+constructionModelesLassoRank <- function(S, k, mini, maxi, X, Y, eps, rank.min, rank.max,
   ncores, fast, verbose)
 {
   n <- nrow(X)
@@ -38,7 +38,7 @@ constructionModelesLassoRank <- function(S, k, mini, maxi, X, Y, eps, rank.min,
     # (rank.max-rank.min)^(k-2) chaque chiffre, et on fait ça (rank.max-rank.min)^2
     # fois ...  Dans la dernière, on répète chaque chiffre une fois, et on fait ça
     # (rank.min-rank.max)^(k-1) fois.
-    RankLambda[, r] <- rep(rank.min + rep(0:(deltaRank - 1), deltaRank^(r - 1), 
+    RankLambda[, r] <- rep(rank.min + rep(0:(deltaRank - 1), deltaRank^(r - 1),
       each = deltaRank^(k - r)), each = L)
   }
   RankLambda[, k + 1] <- rep(1:L, times = Size)
@@ -46,8 +46,8 @@ constructionModelesLassoRank <- function(S, k, mini, maxi, X, Y, eps, rank.min,
   if (ncores > 1)
   {
     cl <- parallel::makeCluster(ncores, outfile = "")
-    parallel::clusterExport(cl, envir = environment(), varlist = c("A1", "Size", 
-      "Pi", "Rho", "mini", "maxi", "X", "Y", "eps", "Rank", "m", "phi", "ncores", 
+    parallel::clusterExport(cl, envir = environment(), varlist = c("A1", "Size",
+      "Pi", "Rho", "mini", "maxi", "X", "Y", "eps", "Rank", "m", "phi", "ncores",
       "verbose"))
   }
 
@@ -55,7 +55,7 @@ constructionModelesLassoRank <- function(S, k, mini, maxi, X, Y, eps, rank.min,
   {
     lambdaIndex <- RankLambda[index, k + 1]
     rankIndex <- RankLambda[index, 1:k]
-    if (ncores > 1) 
+    if (ncores > 1)
       require("valse")  #workers start with an empty environment
 
     # 'relevant' will be the set of relevant columns
@@ -71,7 +71,7 @@ constructionModelesLassoRank <- function(S, k, mini, maxi, X, Y, eps, rank.min,
       phi <- array(0, dim = c(p, m, k))
       if (length(relevant) > 0)
       {
-        res <- EMGrank(S[[lambdaIndex]]$Pi, S[[lambdaIndex]]$Rho, mini, maxi, 
+        res <- EMGrank(S[[lambdaIndex]]$Pi, S[[lambdaIndex]]$Rho, mini, maxi,
           X[, relevant], Y, eps, rankIndex, fast)
         llh <- c(res$LLF, sum(rankIndex * (length(relevant) - rankIndex + m)))
         phi[relevant, , ] <- res$phi
@@ -88,7 +88,7 @@ constructionModelesLassoRank <- function(S, k, mini, maxi, X, Y, eps, rank.min,
       lapply(seq_len(length(S) * Size), computeAtLambda)
     }
 
-  if (ncores > 1) 
+  if (ncores > 1)
     parallel::stopCluster(cl)
 
   out
index 064b54b..f13598a 100644 (file)
@@ -1,4 +1,4 @@
-#' generateXY 
+#' generateXY
 #'
 #' Generate a sample of (X,Y) of size n
 #'
@@ -30,7 +30,7 @@ generateXY <- function(n, π, meanX, β, covX, covY)
     class <- c(class, rep(i, sizePop[i]))
     newBlockX <- MASS::mvrnorm(sizePop[i], meanX, covX)
     X <- rbind(X, newBlockX)
-    Y <- rbind(Y, t(apply(newBlockX, 1, function(row) MASS::mvrnorm(1, row %*% 
+    Y <- rbind(Y, t(apply(newBlockX, 1, function(row) MASS::mvrnorm(1, row %*%
       β[, , i], covY[, , i]))))
   }
 
index 01147d7..7e9cce5 100644 (file)
@@ -1,4 +1,4 @@
-#' initialization of the EM algorithm 
+#' initialization of the EM algorithm
 #'
 #' @param k number of components
 #' @param X matrix of covariates (of size n*p)
@@ -36,10 +36,10 @@ initSmallEM <- function(k, X, Y, fast)
       Z <- Zinit1[, repet]
       Z_indice <- seq_len(n)[Z == r]  #renvoit les indices où Z==r
       if (length(Z_indice) == 1) {
-        betaInit1[, , r, repet] <- MASS::ginv(crossprod(t(X[Z_indice, ]))) %*% 
+        betaInit1[, , r, repet] <- MASS::ginv(crossprod(t(X[Z_indice, ]))) %*%
           crossprod(t(X[Z_indice, ]), Y[Z_indice, ])
       } else {
-        betaInit1[, , r, repet] <- MASS::ginv(crossprod(X[Z_indice, ])) %*% 
+        betaInit1[, , r, repet] <- MASS::ginv(crossprod(X[Z_indice, ])) %*%
           crossprod(X[Z_indice, ], Y[Z_indice, ])
       }
       sigmaInit1[, , r, repet] <- diag(m)
@@ -54,7 +54,7 @@ initSmallEM <- function(k, X, Y, fast)
       {
         dotProduct <- tcrossprod(Y[i, ] %*% rhoInit1[, , r, repet]
           - X[i, ] %*% phiInit1[, , r, repet])
-        Gam[i, r] <- piInit1[repet, r] * 
+        Gam[i, r] <- piInit1[repet, r] *
           det(rhoInit1[, , r, repet]) * exp(-0.5 * dotProduct)
       }
       sumGamI <- sum(Gam[i, ])
index 387d553..8649342 100644 (file)
@@ -1,4 +1,4 @@
-#' valse 
+#' valse
 #'
 #' Main function
 #'
@@ -27,8 +27,8 @@
 #' @examples
 #' #TODO: a few examples
 #' @export
-valse <- function(X, Y, procedure = "LassoMLE", selecMod = "DDSE", gamma = 1, mini = 10, 
-  maxi = 50, eps = 1e-04, kmin = 2, kmax = 3, rank.min = 1, rank.max = 5, ncores_outer = 1, 
+valse <- function(X, Y, procedure = "LassoMLE", selecMod = "DDSE", gamma = 1, mini = 10,
+  maxi = 50, eps = 1e-04, kmin = 2, kmax = 3, rank.min = 1, rank.max = 5, ncores_outer = 1,
   ncores_inner = 1, thresh = 1e-08, grid_lambda = numeric(0), size_coll_mod = 10,
   fast = TRUE, verbose = FALSE, plot = TRUE)
 {
@@ -36,24 +36,24 @@ valse <- function(X, Y, procedure = "LassoMLE", selecMod = "DDSE", gamma = 1, mi
   p <- ncol(X)
   m <- ncol(Y)
 
-  if (verbose) 
+  if (verbose)
     print("main loop: over all k and all lambda")
 
   if (ncores_outer > 1) {
     cl <- parallel::makeCluster(ncores_outer, outfile = "")
-    parallel::clusterExport(cl = cl, envir = environment(), varlist = c("X", 
-      "Y", "procedure", "selecMod", "gamma", "mini", "maxi", "eps", "kmin", 
-      "kmax", "rank.min", "rank.max", "ncores_outer", "ncores_inner", "thresh", 
+    parallel::clusterExport(cl = cl, envir = environment(), varlist = c("X",
+      "Y", "procedure", "selecMod", "gamma", "mini", "maxi", "eps", "kmin",
+      "kmax", "rank.min", "rank.max", "ncores_outer", "ncores_inner", "thresh",
       "size_coll_mod", "verbose", "p", "m"))
   }
 
   # Compute models with k components
   computeModels <- function(k)
   {
-    if (ncores_outer > 1) 
+    if (ncores_outer > 1)
       require("valse") #nodes start with an empty environment
 
-    if (verbose) 
+    if (verbose)
       print(paste("Parameters initialization for k =", k))
     # smallEM initializes parameters by k-means and regression model in each
     # component, doing this 20 times, and keeping the values maximizing the
@@ -61,32 +61,32 @@ valse <- function(X, Y, procedure = "LassoMLE", selecMod = "DDSE", gamma = 1, mi
     P <- initSmallEM(k, X, Y, fast)
     if (length(grid_lambda) == 0)
     {
-      grid_lambda <- computeGridLambda(P$phiInit, P$rhoInit, P$piInit, P$gamInit, 
+      grid_lambda <- computeGridLambda(P$phiInit, P$rhoInit, P$piInit, P$gamInit,
                                        X, Y, gamma, mini, maxi, eps, fast)
     }
-    if (length(grid_lambda) > size_coll_mod) 
+    if (length(grid_lambda) > size_coll_mod)
       grid_lambda <- grid_lambda[seq(1, length(grid_lambda), length.out = size_coll_mod)]
 
-    if (verbose) 
+    if (verbose)
       print("Compute relevant parameters")
     # select variables according to each regularization parameter from the grid:
     # S$selected corresponding to selected variables
-    S <- selectVariables(P$phiInit, P$rhoInit, P$piInit, P$gamInit, mini, maxi, 
+    S <- selectVariables(P$phiInit, P$rhoInit, P$piInit, P$gamInit, mini, maxi,
       gamma, grid_lambda, X, Y, thresh, eps, ncores_inner, fast)
 
     if (procedure == "LassoMLE") {
-      if (verbose) 
+      if (verbose)
         print("run the procedure Lasso-MLE")
       # compute parameter estimations, with the Maximum Likelihood Estimator,
       # restricted on selected variables.
-      models <- constructionModelesLassoMLE(P$phiInit, P$rhoInit, P$piInit, 
+      models <- constructionModelesLassoMLE(P$phiInit, P$rhoInit, P$piInit,
         P$gamInit, mini, maxi, gamma, X, Y, eps, S, ncores_inner, fast, verbose)
     } else {
-      if (verbose) 
+      if (verbose)
         print("run the procedure Lasso-Rank")
       # compute parameter estimations, with the Low Rank Estimator, restricted on
       # selected variables.
-      models <- constructionModelesLassoRank(S, k, mini, maxi, X, Y, eps, rank.min, 
+      models <- constructionModelesLassoRank(S, k, mini, maxi, X, Y, eps, rank.min,
         rank.max, ncores_inner, fast, verbose)
     }
     # warning! Some models are NULL after running selectVariables
@@ -101,7 +101,7 @@ valse <- function(X, Y, procedure = "LassoMLE", selecMod = "DDSE", gamma = 1, mi
     } else {
       lapply(kmin:kmax, computeModels)
     }
-  if (ncores_outer > 1) 
+  if (ncores_outer > 1)
     parallel::stopCluster(cl)
 
   if (!requireNamespace("capushe", quietly = TRUE))
@@ -117,9 +117,9 @@ valse <- function(X, Y, procedure = "LassoMLE", selecMod = "DDSE", gamma = 1, mi
     # For a collection of models (same k, several lambda):
     LLH <- sapply(models, function(model) model$llh[1])
     k <- length(models[[1]]$pi)
-    sumPen <- sapply(models, function(model) k * (dim(model$rho)[1] + sum(model$phi[, 
+    sumPen <- sapply(models, function(model) k * (dim(model$rho)[1] + sum(model$phi[,
       , 1] != 0) + 1) - 1)
-    data.frame(model = paste(i, ".", seq_along(models), sep = ""), pen = sumPen/n, 
+    data.frame(model = paste(i, ".", seq_along(models), sep = ""), pen = sumPen/n,
       complexity = sumPen, contrast = -LLH)
   }))
   tableauRecap <- tableauRecap[which(tableauRecap[, 4] != Inf), ]
@@ -127,16 +127,16 @@ valse <- function(X, Y, procedure = "LassoMLE", selecMod = "DDSE", gamma = 1, mi
   if (verbose == TRUE)
     print(tableauRecap)
   modSel <- capushe::capushe(tableauRecap, n)
-  indModSel <- if (selecMod == "DDSE") 
+  indModSel <- if (selecMod == "DDSE")
   {
     as.numeric(modSel@DDSE@model)
-  } else if (selecMod == "Djump") 
+  } else if (selecMod == "Djump")
   {
     as.numeric(modSel@Djump@model)
-  } else if (selecMod == "BIC") 
+  } else if (selecMod == "BIC")
   {
     modSel@BIC_capushe$model
-  } else if (selecMod == "AIC") 
+  } else if (selecMod == "AIC")
   {
     modSel@AIC_capushe$model
   }
index ec2302d..83316dc 100644 (file)
@@ -1,4 +1,4 @@
-#' Plot 
+#' Plot
 #'
 #' It is a function which plots relevant parameters
 #'
@@ -25,8 +25,8 @@ plot_valse <- function(X, Y, model, n, comp = FALSE, k1 = NA, k2 = NA)
   for (r in 1:K)
   {
     Melt <- melt(t((model$phi[, , r])))
-    gReg[[r]] <- ggplot(data = Melt, aes(x = Var1, y = Var2, fill = value)) + 
-      geom_tile() + scale_fill_gradient2(low = "blue", high = "red", mid = "white", 
+    gReg[[r]] <- ggplot(data = Melt, aes(x = Var1, y = Var2, fill = value)) +
+      geom_tile() + scale_fill_gradient2(low = "blue", high = "red", mid = "white",
       midpoint = 0, space = "Lab") + ggtitle(paste("Regression matrices in cluster", r))
   }
   print(gReg)
@@ -39,9 +39,9 @@ plot_valse <- function(X, Y, model, n, comp = FALSE, k1 = NA, k2 = NA)
     Melt <- melt(t(model$phi[, , k1] - model$phi[, , k2]))
     gDiff <- ggplot(data = Melt, aes(x = Var1, y = Var2, fill = value))
       + geom_tile()
-      + scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, 
+      + scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0,
         space = "Lab")
-      + ggtitle(paste("Difference between regression matrices in cluster", 
+      + ggtitle(paste("Difference between regression matrices in cluster",
         k1, "and", k2))
     print(gDiff)
   }
@@ -52,7 +52,7 @@ plot_valse <- function(X, Y, model, n, comp = FALSE, k1 = NA, k2 = NA)
     matCov[, r] <- diag(model$rho[, , r])
   MeltCov <- melt(matCov)
   gCov <- ggplot(data = MeltCov, aes(x = Var1, y = Var2, fill = value)) + geom_tile()
-    + scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, 
+    + scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0,
       space = "Lab")
     + ggtitle("Covariance matrices")
   print(gCov)
index bab45cc..eb6c590 100644 (file)
@@ -1,4 +1,4 @@
-#' selectVariables 
+#' selectVariables
 #'
 #' It is a function which construct, for a given lambda, the sets of relevant variables.
 #'
 #'
 #' @export
 #'
-selectVariables <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, 
+selectVariables <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma,
   glambda, X, Y, thresh = 1e-08, eps, ncores = 3, fast)
 {
   if (ncores > 1) {
     cl <- parallel::makeCluster(ncores, outfile = "")
-    parallel::clusterExport(cl = cl, varlist = c("phiInit", "rhoInit", "gamInit", 
+    parallel::clusterExport(cl = cl, varlist = c("phiInit", "rhoInit", "gamInit",
       "mini", "maxi", "glambda", "X", "Y", "thresh", "eps"), envir = environment())
   }
 
   # Computation for a fixed lambda
   computeCoefs <- function(lambda)
   {
-    params <- EMGLLF(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda, 
+    params <- EMGLLF(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda,
       X, Y, eps, fast)
 
     p <- ncol(X)
@@ -65,9 +65,9 @@ selectVariables <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma
     } else {
       lapply(glambda, computeCoefs)
     }
-  if (ncores > 1) 
+  if (ncores > 1)
     parallel::stopCluster(cl)
+
   print(out)
   # Suppress models which are computed twice En fait, ca ca fait la comparaison de
   # tous les parametres On veut juste supprimer ceux qui ont les memes variables
index f8b01cc..ed10430 100644 (file)
@@ -1,7 +1,5 @@
-# ...
+# Compute the determinant of a matrix, which can be 1x1 (scalar)
 gdet <- function(M)
 {
-       if (is.matrix(M))
-               return (det(M))
-       return (M[1]) #numeric, double
+       ifelse(is.matrix(M), det(M), M[1])
 }
diff --git a/pkg/inst/testdata/TODO.csv b/pkg/inst/testdata/TODO.csv
deleted file mode 100644 (file)
index d679966..0000000
+++ /dev/null
@@ -1 +0,0 @@
-ou alors data_test.RData, possible aussi
index e8b3b84..b77f24a 100644 (file)
@@ -417,4 +417,4 @@ void EMGLLF_core(
        free(X2);
        free(Y2);
        free(sqNorm2);
-}\f
+}
diff --git a/pkg/tests/testthat.R b/pkg/tests/testthat.R
deleted file mode 100644 (file)
index 88e5631..0000000
+++ /dev/null
@@ -1,4 +0,0 @@
-library(testthat)
-library(valse) #ou load_all()
-
-test_check("valse")
diff --git a/pkg/tests/testthat/helper-context1.R b/pkg/tests/testthat/helper-context1.R
deleted file mode 100644 (file)
index b40f358..0000000
+++ /dev/null
@@ -1,5 +0,0 @@
-# Potential helpers for context 1
-help <- function()
-{
-       #...
-}
diff --git a/pkg/tests/testthat/test-context1.R b/pkg/tests/testthat/test-context1.R
deleted file mode 100644 (file)
index 17c633f..0000000
+++ /dev/null
@@ -1,11 +0,0 @@
-context("Context1")
-
-test_that("function 1...",
-{
-       #expect_lte( ..., ...)
-})
-
-test_that("function 2...",
-{
-       #expect_equal(..., ...)
-})
diff --git a/pkg/vignettes/.gitignore b/pkg/vignettes/.gitignore
deleted file mode 100644 (file)
index e6493d4..0000000
+++ /dev/null
@@ -1,14 +0,0 @@
-#ignore jupyter generated file (ipynb, HTML)
-*.html
-*.ipynb
-
-#and various (pdf)LaTeX files, in case of
-*.tex
-*.pdf
-*.aux
-*.dvi
-*.log
-*.out
-*.toc
-*.synctex.gz
-/figure/