if (verbose)
print(paste("Computations for lambda=", lambda))
- n <- dim(X)[1]
- p <- dim(phiInit)[1]
- m <- dim(phiInit)[2]
- k <- dim(phiInit)[3]
+ n <- nrow(X)
+ p <- ncol(X)
+ m <- ncol(Y)
+ k <- length(piInit)
sel.lambda <- S[[lambda]]$selected
# col.sel = which(colSums(sel.lambda)!=0) #if boolean matrix
col.sel <- which(sapply(sel.lambda, length) > 0) #if list of selected vars
return(NULL)
# lambda == 0 because we compute the EMV: no penalization here
- res <- EMGLLF(array(phiInit[col.sel, , ],dim=c(length(col.sel),m,k)), rhoInit,
- piInit, gamInit, mini, maxi, gamma, 0, as.matrix(X[, col.sel]), Y, eps, fast)
+ res <- EMGLLF(array(phiInit,dim=c(p,m,k))[col.sel, , ], rhoInit, piInit, gamInit,
+ mini, maxi, gamma, 0, as.matrix(X[, col.sel]), Y, eps, fast)
# Eval dimension from the result + selected
phiLambda2 <- res$phi
## Computation of the loglikelihood
# Precompute det(rhoLambda[,,r]) for r in 1...k
- detRho <- sapply(1:k, function(r) det(rhoLambda[, , r]))
+ detRho <- sapply(1:k, function(r) gdet(rhoLambda[, , r]))
sumLogLLH <- 0
for (i in 1:n)
{
sumLogLLH <- sumLogLLH + log(norm_fact) - log((2 * base::pi)^(m/2))
}
llhLambda <- c(sumLogLLH/n, (dimension + m + 1) * k - 1)
- # densite <- vector("double", n)
- # for (r in 1:k)
- # {
- # if (length(col.sel) == 1)
- # {
- # delta <- (Y %*% rhoLambda[, , r] - (X[, col.sel] %*% t(phiLambda[col.sel, , r])))
- # } else delta <- (Y %*% rhoLambda[, , r] - (X[, col.sel] %*% phiLambda[col.sel, , r]))
- # densite <- densite + piLambda[r] * det(rhoLambda[, , r])/(sqrt(2 * base::pi))^m *
- # exp(-rowSums(delta^2)/2)
- # }
- # llhLambda <- c(mean(log(densite)), (dimension + m + 1) * k - 1)
list(phi = phiLambda, rho = rhoLambda, pi = piLambda, llh = llhLambda)
}
#' @param ncores_outer Number of cores for the outer loop on k
#' @param ncores_inner Number of cores for the inner loop on lambda
#' @param thresh real, threshold to say a variable is relevant, by default = 1e-8
-#' @param compute_grid_lambda, TRUE to compute the grid, FALSE if known (in arguments)
-#' @param grid_lambda, a vector with regularization parameters if known, by default 0
+#' @param grid_lambda, a vector with regularization parameters if known, by default numeric(0)
#' @param size_coll_mod (Maximum) size of a collection of models
#' @param fast TRUE to use compiled C code, FALSE for R code only
#' @param verbose TRUE to show some execution traces
#' @export
valse <- function(X, Y, procedure = "LassoMLE", selecMod = "DDSE", gamma = 1, mini = 10,
maxi = 50, eps = 1e-04, kmin = 2, kmax = 3, rank.min = 1, rank.max = 5, ncores_outer = 1,
- ncores_inner = 1, thresh = 1e-08, compute_grid_lambda = TRUE, grid_lambda = 0, size_coll_mod = 10, fast = TRUE, verbose = FALSE,
- plot = TRUE)
+ ncores_inner = 1, thresh = 1e-08, grid_lambda = numeric(0), size_coll_mod = 10,
+ fast = TRUE, verbose = FALSE, plot = TRUE)
{
n <- nrow(X)
p <- ncol(X)
# component, doing this 20 times, and keeping the values maximizing the
# likelihood after 10 iterations of the EM algorithm.
P <- initSmallEM(k, X, Y, fast)
- if (compute_grid_lambda == TRUE)
+ if (length(grid_lambda) == 0)
{
grid_lambda <- computeGridLambda(P$phiInit, P$rhoInit, P$piInit, P$gamInit,
X, Y, gamma, mini, maxi, eps, fast)
}))
tableauRecap <- tableauRecap[which(tableauRecap[, 4] != Inf), ]
if (verbose == TRUE)
- {
print(tableauRecap)
- }
modSel <- capushe::capushe(tableauRecap, n)
indModSel <- if (selecMod == "DDSE")
as.numeric(modSel@DDSE@model) else if (selecMod == "Djump")