From: Benjamin Auder Date: Tue, 10 Dec 2019 11:30:35 +0000 (+0100) Subject: Cosmetics X-Git-Url: https://git.auder.net/css/vendor/doc/js/index.js?a=commitdiff_plain;h=b357ac5457105ee87ad8650d61ad3c3845e0df95;p=morpheus.git Cosmetics --- diff --git a/pkg/R/optimParams.R b/pkg/R/optimParams.R index 4fb6615..a45f71a 100644 --- a/pkg/R/optimParams.R +++ b/pkg/R/optimParams.R @@ -120,8 +120,7 @@ setRefClass( #require(MASS) dd <- d + d^2 + d^3 W <<- MASS::ginv( matrix( .C("Compute_Omega", - X=as.double(X), Y=as.double(Y), M=as.double(Moments(θ)), - pn=as.integer(n), pd=as.integer(d), + X=as.double(X), Y=Y, M=Moments(θ), pn=as.integer(n), pd=as.integer(d), W=as.double(W), PACKAGE="morpheus")$W, nrow=dd, ncol=dd ) ) NULL #avoid returning W }, @@ -147,10 +146,10 @@ setRefClass( f = function(θ) { - "Product t(Mi - hat_Mi) W (Mi - hat_Mi) with Mi(theta)" + "Product t(hat_Mi - Mi) W (hat_Mi - Mi) with Mi(theta)" L <- expArgs(θ) - A <- as.matrix(Moments(L) - Mhat) + A <- as.matrix(Mhat - Moments(L)) t(A) %*% W %*% A }, @@ -187,13 +186,11 @@ setRefClass( # Gradient on p: K-1 columns, dim rows km1 = 1:(K-1) - res <- cbind(res, rbind( sweep(as.matrix(β [,km1]), 2, G1[km1], '*') - G1[K] * β [,K], sweep(as.matrix(β2[,km1]), 2, G2[km1], '*') - G2[K] * β2[,K], sweep(as.matrix(β3[,km1]), 2, G3[km1], '*') - G3[K] * β3[,K] )) - # TODO: understand derivatives order and match the one in optim init param for (i in 1:d) { # i determines the derivated matrix dβ[2,3]