computeMoments = function(X, Y)
list( colMeans(Y * X), .Moments_M2(X,Y), .Moments_M3(X,Y) )
-# Computes the Omega matrix for generalized least square method
-#
-# @param X matrix of covariates (of size n*d)
-# @param Y vector of responses (of size n)
-# @param theta list with p, beta, b
-#
-# @return Matrix of size dimxdim where dim=d+d^2+d^3
-#
-.Moments_M3 = function(X, Y)
-{
- n = nrow(X)
- d = ncol(X)
- M3 = array(0,dim=c(d,d,d))
- array( .C("Moments_M3", X=as.double(X), Y=as.double(Y), pn=as.integer(n),
- pd=as.integer(d), M3=as.double(M3), PACKAGE="morpheus")$M3, dim=c(d,d,d) )
-}
-
# Find the optimal assignment (permutation) between two sets (minimize cost)
#
# @param distances The distances matrix, in columns (distances[i,j] is distance between i
#include <stdlib.h>
-//index matrix (by columns)
+// Index matrix (by columns)
int mi(int i, int j, int d1, int d2)
{
- return j*d1+i;
+ return j*d1 + i;
}
-//index 3-tensor (by columns, matrices ordered by last dim)
+// Index 3-tensor (by columns, matrices ordered by last dim)
int ti(int i, int j, int k, int d1, int d2, int d3)
{
return k*d1*d2 + j*d1 + i;
}
-// Emprical cross-moment of order 2 between X size nxd and Y size n
+// Empirical cross-moment of order 2 between X size nxd and Y size n
void Moments_M2(double* X, double* Y, int* pn, int* pd, double* M2)
{
int n=*pn, d=*pd;
}
}
-// Emprical cross-moment of order 3 between X size nxd and Y size n
+// Empirical cross-moment of order 3 between X size nxd and Y size n
void Moments_M3(double* X, double* Y, int* pn, int* pd, double* M3)
{
int n=*pn, d=*pd;
}
}
+// W = 1/N sum( t(g(Zi,theta)) g(Zi,theta) )
+// with g(Zi, theta) = i-th contribution to all moments (size dim) - real moments
void Compute_Omega(double* X, double* Y, double* M, int* pn, int* pd, double* W)
{
int n=*pn, d=*pd;
- //double* W = (double*)calloc(d+d*d+d*d*d,sizeof(double));
-
- // TODO: formula 1/N sum( t(g(Zi,theta)) g(Zi,theta) )
- // = 1/N sum( t( (XiYi-...) - M[i] ) ( ... ) )
- // --> similar to Moments_M2 and M3 above
- for (int j=0; j<
+ //int dim = d+d*d+d*d*d
+ //double* W = (double*)calloc(dim*dim,sizeof(double));
+ double* g = (double*)malloc(dim * sizeof(double));
for (int i=0; i<n; i++)
{
- W[] +=
+ // Fill gi:
+ for (int j=0; j<d; j++)
+ g[j] = Y[i] * X[mi(i,j,n,d)] - M[i]
+ for (int j=d; j<d+(d*d); j++)
+ {
+ int idx1 = (j-d) % d; //num row
+ int idx2 = ((j-d) - idx1) / d; //num col
+ g[j] = 0.0;
+ if (idx1 == idx2)
+ g[j] -= Y[i];
+ g[j] += Y[i] * X[mi(i,idx1,n,d)]*X[mi(i,idx2,n,d)];
+ }
+ for (int j=d+d*d; j<dim; j++)
+ {
+ int idx1 = (j-d-d*d) % d; //num row
+ int idx2 = ((j-d-d*d - idx1) / d) %d; //num col
+ int idx3 = (((j-d-d*d - idx1) / d) - idx2) / d; //num "depth"
+ g[j] = 0.0;
+ double tensor_elt = Y[i]*X[mi(i,k,n,d)] / n;
+ if (idx1 == idx2)
+ g[j] -= Y[i] * X[mi(i,idx3,n,d)];
+ if (idx1 == idx3)
+ g[j] -= Y[i] * X[mi(i,idx2,n,d)];
+ if (idx2 == idx3)
+ g[j] -= Y[i] * X[mi(i,idx1,n,d)];
+ g[j] += Y[i] * X[mi(i,idx1,n,d)]*X[mi(i,idx2,n,d)]*X[mi(i,idx3,n,d)];
+ }
+ // Add 1/n t(gi) %*% gi to W
+ for (int j=0; j<dim; j++)
+ {
+ for (int k=0; k<dim; k++)
+ W[j*dim+k] += g[j] * g[k] / n;
+ }
}
+ free(g);
}