tex='Tex',
)
-def read(text, argv=sys.argv[2:]):
+def read(text, argv=sys.argv[3:]):
lines = text.splitlines()
# First read all include statements
for i in range(len(lines)):
def driver():
"""Compile a document and its variables."""
try:
- filename = sys.argv[1]
+ inputfile = sys.argv[1]
with open(filename, 'r') as f:
text = f.read()
+ outputfile = '-' if len(sys.argv) <= 2 else sys.argv[2]
except (IndexError, IOError) as e:
- print('Usage: %s filename' % (sys.argv[0]))
+ print('Usage: %s inputfile [outputfile|- [Mako args]]' % (sys.argv[0]))
print(e)
sys.exit(1)
- cells = read(text, argv=sys.argv[2:])
+ cells = read(text, argv=sys.argv[3:])
filestr = write(cells)
# Assuming file extension .gj (generate Jupyter); TODO: less strict
- filename = filename[:-3] + '.ipynb'
+ outputfile = inputfile[:-3]+'.ipynb' if outputfile == '-' else outputfile
with open(filename, 'w') as f:
f.write(filestr)
ts_data = read.csv(system.file("extdata","pm10_mesures_H_loc_report.csv",package="talweg"))
exo_data = read.csv(system.file("extdata","meteo_extra_noNAs.csv",package="talweg"))
-data = getData(ts_data, exo_data, input_tz = "Europe/Paris", working_tz="Europe/Paris", predict_at=13)
+data = getData(ts_data, exo_data, input_tz = "Europe/Paris", working_tz="Europe/Paris",
+ predict_at=${P}) #predict from P+1 to P+H included
indices_ch = seq(as.Date("2015-01-18"),as.Date("2015-01-24"),"days")
indices_ep = seq(as.Date("2015-03-15"),as.Date("2015-03-21"),"days")
indices_np = seq(as.Date("2015-04-26"),as.Date("2015-05-02"),"days")
-H = 17 #predict from 8am to 12pm
% for i in range(3):
-----
<h2 style="color:blue;font-size:2em">${list_titles[i]}</h2>
-----r
-p_nn_exo = computeForecast(data, ${list_indices[i]}, "Neighbors", "Neighbors", simtype="exo", horizon=H)
-p_nn_mix = computeForecast(data, ${list_indices[i]}, "Neighbors", "Neighbors", simtype="mix", horizon=H)
-p_az = computeForecast(data, ${list_indices[i]}, "Average", "Zero", horizon=H) #, memory=183)
-p_pz = computeForecast(data, ${list_indices[i]}, "Persistence", "Zero", horizon=H, same_day=TRUE)
+p_nn_exo = computeForecast(data, ${list_indices[i]}, "Neighbors", "Neighbors",
+ horizon=${H}, simtype="exo")
+p_nn_mix = computeForecast(data, ${list_indices[i]}, "Neighbors", "Neighbors",
+ horizon=${H}, simtype="mix")
+p_az = computeForecast(data, ${list_indices[i]}, "Average", "Zero",
+ horizon=${H})
+p_pz = computeForecast(data, ${list_indices[i]}, "Persistence", "Zero",
+ horizon=${H}, same_day=TRUE)
-----r
-e_nn_exo = computeError(data, p_nn_exo, H)
-e_nn_mix = computeError(data, p_nn_mix, H)
-e_az = computeError(data, p_az, H)
-e_pz = computeError(data, p_pz, H)
+e_nn_exo = computeError(data, p_nn_exo, ${H})
+e_nn_mix = computeError(data, p_nn_mix, ${H})
+e_az = computeError(data, p_az, ${H})
+e_pz = computeError(data, p_pz, ${H})
options(repr.plot.width=9, repr.plot.height=7)
plotError(list(e_nn_mix, e_pz, e_az, e_nn_exo), cols=c(1,2,colors()[258], 4))