| 1 | import { ChessRules, Move, PiPo } from "@/base_rules"; |
| 2 | import { ArrayFun } from "@/utils/array"; |
| 3 | import { randInt, shuffle } from "@/utils/alea"; |
| 4 | |
| 5 | export class MakrukRules extends ChessRules { |
| 6 | |
| 7 | static get HasFlags() { |
| 8 | return false; |
| 9 | } |
| 10 | |
| 11 | static get HasEnpassant() { |
| 12 | return false; |
| 13 | } |
| 14 | |
| 15 | static get Monochrome() { |
| 16 | return true; |
| 17 | } |
| 18 | |
| 19 | static get Notoodark() { |
| 20 | return true; |
| 21 | } |
| 22 | |
| 23 | static get PawnSpecs() { |
| 24 | return Object.assign( |
| 25 | {}, |
| 26 | ChessRules.PawnSpecs, |
| 27 | { promotions: [V.QUEEN] } |
| 28 | ); |
| 29 | } |
| 30 | |
| 31 | static get PIECES() { |
| 32 | return ChessRules.PIECES.concat(V.PROMOTED); |
| 33 | } |
| 34 | |
| 35 | static get PROMOTED() { |
| 36 | return 'f'; |
| 37 | } |
| 38 | |
| 39 | static GenRandInitFen(options) { |
| 40 | if (options.randomness == 0) |
| 41 | return "rnbqkbnr/8/pppppppp/8/8/PPPPPPPP/8/RNBKQBNR w 0"; |
| 42 | |
| 43 | let pieces = { w: new Array(8), b: new Array(8) }; |
| 44 | for (let c of ["w", "b"]) { |
| 45 | if (c == 'b' && options.randomness == 1) { |
| 46 | pieces['b'] = pieces['w']; |
| 47 | break; |
| 48 | } |
| 49 | |
| 50 | // Get random squares for every piece, totally freely (no castling) |
| 51 | let positions = shuffle(ArrayFun.range(8)); |
| 52 | const composition = ['b', 'b', 'r', 'r', 'n', 'n', 'k', 'q']; |
| 53 | for (let i = 0; i < 8; i++) pieces[c][positions[i]] = composition[i]; |
| 54 | } |
| 55 | return ( |
| 56 | pieces["b"].join("") + |
| 57 | "/8/pppppppp/8/8/PPPPPPPP/8/" + |
| 58 | pieces["w"].join("").toUpperCase() + |
| 59 | " w 0" |
| 60 | ); |
| 61 | } |
| 62 | |
| 63 | getPpath(b) { |
| 64 | return "Makruk/" + b; |
| 65 | } |
| 66 | |
| 67 | getPotentialMovesFrom([x, y]) { |
| 68 | if (this.getPiece(x, y) == V.PROMOTED) |
| 69 | return this.getPotentialQueenMoves([x, y]); |
| 70 | return super.getPotentialMovesFrom([x, y]); |
| 71 | } |
| 72 | |
| 73 | getPotentialPawnMoves([x, y]) { |
| 74 | const color = this.turn; |
| 75 | const shiftX = V.PawnSpecs.directions[color]; |
| 76 | const sixthRank = (color == 'w' ? 2 : 5); |
| 77 | const tr = (x + shiftX == sixthRank ? { p: V.PROMOTED, c: color } : null); |
| 78 | let moves = []; |
| 79 | if (this.board[x + shiftX][y] == V.EMPTY) |
| 80 | // One square forward |
| 81 | moves.push(this.getBasicMove([x, y], [x + shiftX, y], tr)); |
| 82 | // Captures |
| 83 | for (let shiftY of [-1, 1]) { |
| 84 | if ( |
| 85 | y + shiftY >= 0 && y + shiftY < 8 && |
| 86 | this.board[x + shiftX][y + shiftY] != V.EMPTY && |
| 87 | this.canTake([x, y], [x + shiftX, y + shiftY]) |
| 88 | ) { |
| 89 | moves.push(this.getBasicMove([x, y], [x + shiftX, y + shiftY], tr)); |
| 90 | } |
| 91 | } |
| 92 | return moves; |
| 93 | } |
| 94 | |
| 95 | getPotentialBishopMoves(sq) { |
| 96 | const forward = (this.turn == 'w' ? -1 : 1); |
| 97 | return this.getSlideNJumpMoves( |
| 98 | sq, V.steps[V.BISHOP].concat([ [forward, 0] ]), 1); |
| 99 | } |
| 100 | |
| 101 | getPotentialQueenMoves(sq) { |
| 102 | return this.getSlideNJumpMoves(sq, V.steps[V.BISHOP], 1); |
| 103 | } |
| 104 | |
| 105 | isAttacked(sq, color) { |
| 106 | return ( |
| 107 | super.isAttacked(sq, color) || this.isAttackedByPromoted(sq, color) |
| 108 | ); |
| 109 | } |
| 110 | |
| 111 | isAttackedByBishop(sq, color) { |
| 112 | const forward = (color == 'w' ? 1 : -1); |
| 113 | return this.isAttackedBySlideNJump( |
| 114 | sq, color, V.BISHOP, V.steps[V.BISHOP].concat([ [forward, 0] ]), 1); |
| 115 | } |
| 116 | |
| 117 | isAttackedByQueen(sq, color) { |
| 118 | return this.isAttackedBySlideNJump( |
| 119 | sq, color, V.QUEEN, V.steps[V.BISHOP], 1); |
| 120 | } |
| 121 | |
| 122 | isAttackedByPromoted(sq, color) { |
| 123 | return super.isAttackedBySlideNJump( |
| 124 | sq, color, V.PROMOTED, V.steps[V.BISHOP], 1); |
| 125 | } |
| 126 | |
| 127 | static get VALUES() { |
| 128 | return { |
| 129 | p: 1, |
| 130 | r: 5, |
| 131 | n: 3, |
| 132 | b: 3, |
| 133 | q: 2, |
| 134 | f: 2, |
| 135 | k: 1000 |
| 136 | }; |
| 137 | } |
| 138 | |
| 139 | }; |