| 1 | p = 10 |
| 2 | q = 8 |
| 3 | k = 2 |
| 4 | D = 20 |
| 5 | |
| 6 | meanX = matrix(nrow=p,ncol=k) |
| 7 | meanX[,1] = rep(0,p) |
| 8 | meanX[,2] = rep(1,p) |
| 9 | |
| 10 | covX = array(dim=c(p,p,k)) |
| 11 | covX[,,1] = 0.1*diag(p) |
| 12 | covX[,,2] = 0.5*diag(p) |
| 13 | |
| 14 | covY = array(dim = c(q,q,k)) |
| 15 | covY[,,1] = 0.1*diag(q) |
| 16 | covY[,,2] = 0.2*diag(q) |
| 17 | |
| 18 | beta = array(dim = c(p,q,2)) |
| 19 | beta[,,2] = matrix(c(rep(2,(D)),rep(0, p*q-D))) |
| 20 | beta[,,1] = matrix(c(rep(1,D),rep(0, p*q-D))) |
| 21 | |
| 22 | n = 100 |
| 23 | |
| 24 | pi = c(0.4,0.6) |
| 25 | |
| 26 | data = generateXY(meanX,covX,covY, pi, beta, n) |
| 27 | |
| 28 | X = data$X |
| 29 | Y = data$Y |
| 30 | |
| 31 | res_valse = valse(X,Y) |