3 #' Optimize the parameters of a mixture of logistic regressions model, possibly using
4 #' \code{mu <- computeMu(...)} as a partial starting point.
6 #' @param K Number of populations.
7 #' @param link The link type, 'logit' or 'probit'.
8 #' @param optargs a list with optional arguments:
10 #' \item 'M' : list of moments of order 1,2,3: will be computed if not provided.
11 #' \item 'X,Y' : input/output, mandatory if moments not given
12 #' \item 'exact': use exact formulas when available?
13 #' \item weights Weights on moments when minimizing sum of squares
16 #' @return An object 'op' of class OptimParams, initialized so that \code{op$run(x0)}
17 #' outputs the list of optimized parameters
19 #' \item p: proportions, size K
20 #' \item β: regression matrix, size dxK
21 #' \item b: intercepts, size K
23 #' x0 is a vector containing respectively the K-1 first elements of p, then β by
24 #' columns, and finally b: \code{x0 = c(p[1:(K-1)],as.double(β),b)}.
26 #' @seealso \code{multiRun} to estimate statistics based on β, and
27 #' \code{generateSampleIO} for I/O random generation.
30 #' # Optimize parameters from estimated μ
31 #' io = generateSampleIO(10000, 1/2, matrix(c(1,-2,3,1),ncol=2), c(0,0), "logit")
32 #' μ = computeMu(io$X, io$Y, list(K=2))
33 #' M <- computeMoments(io$X, io$Y)
34 #' o <- optimParams(2, "logit", list(M=M))
35 #' x0 <- c(1/2, as.double(μ), c(0,0))
37 #' # Compare with another starting point
38 #' x1 <- c(1/2, 2*as.double(μ), c(0,0))
40 #' o$f( o$linArgs(par0) )
41 #' o$f( o$linArgs(par1) )
43 optimParams = function(K, link=c("logit","probit"), optargs=list())
46 link <- match.arg(link)
47 if (!is.list(optargs))
49 if (!is.numeric(K) || K < 2)
50 stop("K: integer >= 2")
55 if (is.null(optargs$X) || is.null(optargs$Y))
56 stop("If moments are not provided, X and Y are required")
57 M <- computeMoments(optargs$X,optargs$Y)
60 # Build and return optimization algorithm object
61 methods::new("OptimParams", "li"=link, "M1"=as.double(M[[1]]),
62 "M2"=as.double(M[[2]]), "M3"=as.double(M[[3]]), "K"=as.integer(K))
65 # Encapsulated optimization for p (proportions), β and b (regression parameters)
67 # @field li Link, 'logit' or 'probit'
68 # @field M1 Estimated first-order moment
69 # @field M2 Estimated second-order moment (flattened)
70 # @field M3 Estimated third-order moment (flattened)
71 # @field K Number of populations
72 # @field d Number of dimensions
75 Class = "OptimParams",
79 li = "character", #link 'logit' or 'probit'
80 M1 = "numeric", #order-1 moment (vector size d)
81 M2 = "numeric", #M2 easier to process as a vector
82 M3 = "numeric", #M3 easier to process as a vector
86 # Weights matrix (generalized least square)
91 initialize = function(...)
93 "Check args and initialize K, d"
96 if (!hasArg("li") || !hasArg("M1") || !hasArg("M2") || !hasArg("M3")
99 stop("Missing arguments")
103 W <<- diag(d+d^2+d^3) #initialize at W = Identity
106 expArgs = function(x)
108 "Expand individual arguments from vector x"
111 # p: dimension K-1, need to be completed
112 "p" = c(x[1:(K-1)], 1-sum(x[1:(K-1)])),
113 "β" = matrix(x[K:(K+d*K-1)], ncol=K),
114 "b" = x[(K+d*K):(K+(d+1)*K-1)])
117 linArgs = function(o)
119 " Linearize vectors+matrices into a vector x"
121 c(o$p[1:(K-1)], as.double(o$β), o$b)
126 "Product t(Mi - hat_Mi) W (Mi - hat_Mi) with Mi(theta)"
131 λ <- sqrt(colSums(β^2))
134 # Tensorial products β^2 = β2 and β^3 = β3 must be computed from current β1
135 β2 <- apply(β, 2, function(col) col %o% col)
136 β3 <- apply(β, 2, function(col) col %o% col %o% col)
139 sum( ( β %*% (p * .G(li,1,λ,b)) - M1 )^2 ) +
140 sum( ( β2 %*% (p * .G(li,2,λ,b)) - M2 )^2 ) +
141 sum( ( β3 %*% (p * .G(li,3,λ,b)) - M3 )^2 ) )
146 "Gradient of f, dimension (K-1) + d*K + K = (d+2)*K - 1"
151 λ <- sqrt(colSums(β^2))
152 μ <- sweep(β, 2, λ, '/')
155 # Tensorial products β^2 = β2 and β^3 = β3 must be computed from current β1
156 β2 <- apply(β, 2, function(col) col %o% col)
157 β3 <- apply(β, 2, function(col) col %o% col %o% col)
159 # Some precomputations
166 # (Mi - hat_Mi)^2 ' == (Mi - hat_Mi)' 2(Mi - hat_Mi) = Mi' Fi
167 F1 = as.double( 2 * ( β %*% (p * G1) - M1 ) )
168 F2 = as.double( 2 * ( β2 %*% (p * G2) - M2 ) )
169 F3 = as.double( 2 * ( β3 %*% (p * G3) - M3 ) )
172 grad <- #gradient on p
173 t( sweep(as.matrix(β [,km1]), 2, G1[km1], '*') - G1[K] * β [,K] ) %*% F1 +
174 t( sweep(as.matrix(β2[,km1]), 2, G2[km1], '*') - G2[K] * β2[,K] ) %*% F2 +
175 t( sweep(as.matrix(β3[,km1]), 2, G3[km1], '*') - G3[K] * β3[,K] ) %*% F3
177 grad_β <- matrix(nrow=d, ncol=K)
180 # i determines the derivated matrix dβ[2,3]
182 dβ_left <- sweep(β, 2, p * G3 * β[i,], '*')
183 dβ_right <- matrix(0, nrow=d, ncol=K)
185 dβ_right[block,] <- dβ_right[block,] + 1
186 dβ <- dβ_left + sweep(dβ_right, 2, p * G1, '*')
188 dβ2_left <- sweep(β2, 2, p * G4 * β[i,], '*')
189 dβ2_right <- do.call( rbind, lapply(1:d, function(j) {
190 sweep(dβ_right, 2, β[j,], '*')
192 block <- ((i-1)*d+1):(i*d)
193 dβ2_right[block,] <- dβ2_right[block,] + β
194 dβ2 <- dβ2_left + sweep(dβ2_right, 2, p * G2, '*')
196 dβ3_left <- sweep(β3, 2, p * G5 * β[i,], '*')
197 dβ3_right <- do.call( rbind, lapply(1:d, function(j) {
198 sweep(dβ2_right, 2, β[j,], '*')
200 block <- ((i-1)*d*d+1):(i*d*d)
201 dβ3_right[block,] <- dβ3_right[block,] + β2
202 dβ3 <- dβ3_left + sweep(dβ3_right, 2, p * G3, '*')
204 grad_β[i,] <- t(dβ) %*% F1 + t(dβ2) %*% F2 + t(dβ3) %*% F3
206 grad <- c(grad, as.double(grad_β))
208 grad = c(grad, #gradient on b
209 t( sweep(β, 2, p * G2, '*') ) %*% F1 +
210 t( sweep(β2, 2, p * G3, '*') ) %*% F2 +
211 t( sweep(β3, 2, p * G4, '*') ) %*% F3 )
218 "Run optimization from x0 with solver..."
223 stop("At least x0$β must be provided")
224 if (!is.matrix(x0$β) || any(is.na(x0$β)) || ncol(x0$β) != K)
225 stop("x0$β: matrix, no NA, ncol == K")
228 else if (length(x0$p) != K-1 || sum(x0$p) > 1)
229 stop("x0$p should contain positive integers and sum to < 1")
230 # Next test = heuristic to detect missing b (when matrix is called "beta")
231 if (is.null(x0$b) || all(x0$b == x0$β))
233 else if (any(is.na(x0$b)))
234 stop("x0$b cannot have missing values")
236 op_res = constrOptim( linArgs(x0), .self$f, .self$grad_f,
238 rbind( rep(-1,K-1), diag(K-1) ),
239 matrix(0, nrow=K, ncol=(d+1)*K) ),
240 ci=c(-1,rep(0,K-1)) )
247 # Compute vectorial E[g^{(order)}(<β,x> + b)] with x~N(0,Id) (integral in R^d)
248 # = E[g^{(order)}(z)] with z~N(b,diag(λ))
250 # @param link Link, 'logit' or 'probit'
251 # @param order Order of derivative
252 # @param λ Norm of columns of β
255 .G <- function(link, order, λ, b)
257 # NOTE: weird "integral divergent" error on inputs:
258 # link="probit"; order=2; λ=c(531.8099,586.8893,523.5816); b=c(-118.512674,-3.488020,2.109969)
259 # Switch to pracma package for that (but it seems slow...)
261 exactComp <- FALSE #TODO: global, or argument...
263 if (exactComp && link == "probit")
265 # Use exact computations
266 sapply( seq_along(λ), function(k) {
267 .exactProbitIntegral(order, λ[k], b[k])
273 # Numerical integration
274 sapply( seq_along(λ), function(k) {
277 # Fast code, may fail:
278 res <- stats::integrate(
279 function(z) .deriv[[link]][[order]](λ[k]*z+b[k]) * exp(-z^2/2) / sqrt(2*pi),
280 lower=-Inf, upper=Inf )$value
281 }, error = function(e) {
282 # Robust slow code, no fails observed:
283 sink("/dev/null") #pracma package has some useless printed outputs...
284 res <- pracma::integral(
285 function(z) .deriv[[link]][[order]](λ[k]*z+b[k]) * exp(-z^2/2) / sqrt(2*pi),
286 xmin=-Inf, xmax=Inf, method="Kronrod")
294 # TODO: check these computations (wrong atm)
295 .exactProbitIntegral <- function(order, λ, b)
297 c1 = (1/sqrt(2*pi)) * exp( -.5 * b/((λ^2+1)^2) )
300 c2 = b - λ^2 / (λ^2+1)
304 return (c1 * (λ^2 - 1 + c2^2))
306 return ( (c1*c2/((λ^2+1)^2)) * (-λ^4*((b+1)^2+1) -
307 2*λ^3 + λ^2*(2-2*b*(b-1)) + 6*λ + 3 - b^2) )
308 if (order == 5) #only remaining case...
309 return ( c1 * (3*λ^4+c2^4+6*c1^2*(λ^2-1) - 6*λ^2 + 6) )
312 # Derivatives list: g^(k)(x) for links 'logit' and 'probit'
316 # 'probit' derivatives list;
317 # TODO: exact values for the integral E[g^(k)(λz+b)]
318 function(x) exp(-x^2/2)/(sqrt(2*pi)), #g'
319 function(x) exp(-x^2/2)/(sqrt(2*pi)) * -x, #g''
320 function(x) exp(-x^2/2)/(sqrt(2*pi)) * ( x^2 - 1), #g^(3)
321 function(x) exp(-x^2/2)/(sqrt(2*pi)) * (-x^3 + 3*x), #g^(4)
322 function(x) exp(-x^2/2)/(sqrt(2*pi)) * ( x^4 - 6*x^2 + 3) #g^(5)
325 # Sigmoid derivatives list, obtained with http://www.derivative-calculator.net/
326 # @seealso http://www.ece.uc.edu/~aminai/papers/minai_sigmoids_NN93.pdf
327 function(x) {e=exp(x); .zin(e /(e+1)^2)}, #g'
328 function(x) {e=exp(x); .zin(e*(-e + 1) /(e+1)^3)}, #g''
329 function(x) {e=exp(x); .zin(e*( e^2 - 4*e + 1) /(e+1)^4)}, #g^(3)
330 function(x) {e=exp(x); .zin(e*(-e^3 + 11*e^2 - 11*e + 1) /(e+1)^5)}, #g^(4)
331 function(x) {e=exp(x); .zin(e*( e^4 - 26*e^3 + 66*e^2 - 26*e + 1)/(e+1)^6)} #g^(5)
335 # Utility for integration: "[return] zero if [argument is] NaN" (Inf / Inf divs)
337 # @param x Ratio of polynoms of exponentials, as in .S[[i]]