1 #' @include Forecaster.R
3 #' Neighbors Forecaster
5 #' Predict tomorrow as a weighted combination of "futures of the past" days.
6 #' Inherits \code{\link{Forecaster}}
8 NeighborsForecaster = R6::R6Class("NeighborsForecaster",
12 predictShape = function(data, today, memory, horizon, ...)
14 # (re)initialize computed parameters
15 private$.params <- list("weights"=NA, "indices"=NA, "window"=NA)
17 # Do not forecast on days with NAs (TODO: softer condition...)
18 if (any(is.na(data$getCenteredSerie(today))))
21 # Determine indices of no-NAs days followed by no-NAs tomorrows
22 fdays = getNoNA2(data, max(today-memory,1), today-1)
25 simtype = ifelse(hasArg("simtype"), list(...)$simtype, "mix") #or "endo", or "exo"
26 kernel = ifelse(hasArg("kernel"), list(...)$kernel, "Gauss") #or "Epan"
29 return ( private$.predictShapeAux(data,
30 fdays, today, horizon, list(...)$h_window, kernel, simtype, TRUE) )
33 # Indices of similar days for cross-validation; TODO: 45 = magic number
34 sdays = getSimilarDaysIndices(today, limit=45, same_season=FALSE)
36 # Function to optimize h : h |--> sum of prediction errors on last 45 "similar" days
37 errorOnLastNdays = function(h, kernel, simtype)
41 for (i in intersect(fdays,sdays))
43 # mix_strategy is never used here (simtype != "mix"), therefore left blank
44 prediction = private$.predictShapeAux(data,
45 fdays, i, horizon, h, kernel, simtype, FALSE)
46 if (!is.na(prediction[1]))
48 nb_jours = nb_jours + 1
50 mean((data$getCenteredSerie(i+1)[1:horizon] - prediction)^2)
53 return (error / nb_jours)
56 if (simtype != "endo")
58 h_best_exo = optimize(
59 errorOnLastNdays, c(0,10), kernel=kernel, simtype="exo")$minimum
63 h_best_endo = optimize(
64 errorOnLastNdays, c(0,10), kernel=kernel, simtype="endo")$minimum
67 if (simtype == "endo")
69 return (private$.predictShapeAux(data,
70 fdays, today, horizon, h_best_endo, kernel, "endo", TRUE))
74 return (private$.predictShapeAux(data,
75 fdays, today, horizon, h_best_exo, kernel, "exo", TRUE))
79 h_best_mix = c(h_best_endo,h_best_exo)
80 return(private$.predictShapeAux(data,
81 fdays, today, horizon, h_best_mix, kernel, "mix", TRUE))
86 # Precondition: "today" is full (no NAs)
87 .predictShapeAux = function(data, fdays, today, horizon, h, kernel, simtype, final_call)
89 fdays = fdays[ fdays < today ]
90 # TODO: 3 = magic number
91 if (length(fdays) < 3)
96 h_endo = ifelse(simtype=="mix", h[1], h)
98 # Distances from last observed day to days in the past
99 distances2 = rep(NA, length(fdays))
100 for (i in seq_along(fdays))
102 delta = data$getCenteredSerie(today) - data$getCenteredSerie(fdays[i])
103 # Require at least half of non-NA common values to compute the distance
104 if ( !any( is.na(delta) ) )
105 distances2[i] = mean(delta^2)
108 sd_dist = sd(distances2)
109 if (sd_dist < .Machine$double.eps)
111 # warning("All computed distances are very close: stdev too small")
112 sd_dist = 1 #mostly for tests... FIXME:
116 exp(-distances2/(sd_dist*h_endo^2))
120 u = 1 - distances2/(sd_dist*h_endo^2)
126 if (simtype != "endo")
128 h_exo = ifelse(simtype=="mix", h[2], h)
130 M = matrix( nrow=1+length(fdays), ncol=1+length(data$getExo(today)) )
131 M[1,] = c( data$getLevel(today), as.double(data$getExo(today)) )
132 for (i in seq_along(fdays))
133 M[i+1,] = c( data$getLevel(fdays[i]), as.double(data$getExo(fdays[i])) )
135 sigma = cov(M) #NOTE: robust covariance is way too slow
136 sigma_inv = solve(sigma) #TODO: use pseudo-inverse if needed?
138 # Distances from last observed day to days in the past
139 distances2 = rep(NA, nrow(M)-1)
142 delta = M[1,] - M[i,]
143 distances2[i-1] = delta %*% sigma_inv %*% delta
146 sd_dist = sd(distances2)
147 if (sd_dist < .Machine$double.eps)
149 # warning("All computed distances are very close: stdev too small")
150 sd_dist = 1 #mostly for tests... FIXME:
154 exp(-distances2/(sd_dist*h_exo^2))
158 u = 1 - distances2/(sd_dist*h_exo^2)
165 if (simtype == "exo")
167 else if (simtype == "endo")
170 simils_endo * simils_exo
172 prediction = rep(0, horizon)
173 for (i in seq_along(fdays))
174 prediction = prediction + similarities[i] * data$getSerie(fdays[i]+1)[1:horizon]
175 prediction = prediction / sum(similarities, na.rm=TRUE)
179 private$.params$weights <- similarities
180 private$.params$indices <- fdays
181 private$.params$window <-
184 else if (simtype=="exo")