3 #' Compute the WER distances between the series at specified indices, which are
4 #' obtaind by \code{getSeries(indices)}
6 #' @param indices Range of series indices to cluster
7 #' @inheritParams claws
8 #' @inheritParams computeSynchrones
10 #' @return A distances matrix of size K x K where K == length(indices)
13 computeWerDists <- function(indices, getSeries, nb_series_per_chunk, smooth_lvl, nvoice,
14 nbytes, endian, ncores_clust=3, verbose=FALSE, parll=TRUE)
17 L <- length(getSeries(1)) #TODO: not very neat way to get L
18 noctave <- ceiling(log2(L)) #min power of 2 to cover serie range
19 # Since a CWT contains noctave*nvoice complex series, we deduce the number of CWT to
20 # retrieve/put in one chunk.
21 nb_cwt_per_chunk <- max(1, floor(nb_series_per_chunk / (nvoice*noctave*2)))
23 # Initialize result as a square big.matrix of size 'number of medoids'
24 Xwer_dist <- bigmemory::big.matrix(nrow=n, ncol=n, type="double")
26 cwt_file <- tempfile(pattern="epclust_cwt.bin_")
27 # Compute the getSeries(indices) CWT, and store the results in the binary file
28 computeSaveCWT <- function(indices)
32 # parallel workers start with an empty environment
33 require("epclust", quietly=TRUE)
36 # Obtain CWT as big vectors of real part + imaginary part (concatenate)
37 ts_cwt <- sapply(indices, function(i) {
38 ts <- scale(ts(getSeries(i)), center=TRUE, scale=FALSE)
39 ts_cwt <- Rwave::cwt(ts, noctave, nvoice, w0=2*pi, twoD=TRUE, plot=FALSE)
40 c( as.double(Re(ts_cwt)),as.double(Im(ts_cwt)) )
44 binarize(ts_cwt, cwt_file, nb_cwt_per_chunk, ",", nbytes, endian)
47 # Function to retrieve a synchrone CWT from (binary) file
48 getCWT <- function(index, L)
50 flat_cwt <- getDataInFile(index, cwt_file, nbytes, endian)
51 cwt_length <- length(flat_cwt) / 2
52 re_part <- as.matrix(flat_cwt[1:cwt_length], nrow=L)
53 im_part <- as.matrix(flat_cwt[(cwt_length+1):(2*cwt_length)], nrow=L)
54 re_part + 1i * im_part
57 # Compute distance between columns i and j for j>i
58 computeDistances <- function(i)
62 # parallel workers start with an empty environment
63 require("epclust", quietly=TRUE)
64 Xwer_dist <- bigmemory::attach.big.matrix(Xwer_dist_desc)
67 if (verbose && !parll)
68 cat(paste(" Distances from ",i," to ",i+1,"...",n,"\n", sep=""))
70 # Get CWT of column i, and run computations for columns j>i
72 WX <- filterMA(Mod(cwt_i * Conj(cwt_i)), smooth_lvl)
78 # Compute the ratio of integrals formula 5.6 for WER^2
79 # in https://arxiv.org/abs/1101.4744v2 paragraph 5.3
80 num <- filterMA(Mod(cwt_i * Conj(cwt_j)), smooth_lvl)
81 WY <- filterMA(Mod(cwt_j * Conj(cwt_j)), smooth_lvl)
82 wer2 <- sum(colSums(num)^2) / sum(colSums(WX) * colSums(WY))
84 Xwer_dist[i,j] <- sqrt(L * ncol(cwt_i) * (1 - wer2))
85 Xwer_dist[j,i] <- Xwer_dist[i,j]
92 # outfile=="" to see stderr/stdout on terminal
95 parallel::makeCluster(ncores_clust, outfile="")
97 parallel::makeCluster(ncores_clust)
98 Xwer_dist_desc <- bigmemory::describe(Xwer_dist)
99 parallel::clusterExport(cl, varlist=c("parll","nb_cwt_per_chunk","n","L",
100 "Xwer_dist_desc","noctave","nvoice","getCWT"), envir=environment())
104 cat(paste("--- Precompute and serialize synchrones CWT\n", sep=""))
106 # Split indices by packets of length at most nb_cwt_per_chunk
107 indices_cwt <- .splitIndices(seq_len(n), nb_cwt_per_chunk)
110 parallel::parLapply(cl, indices_cwt, computeSaveCWT)
112 lapply(indices_cwt, computeSaveCWT)
115 cat(paste("--- Compute WER distances\n", sep=""))
119 parallel::parLapply(cl, seq_len(n-1), computeDistances)
121 lapply(seq_len(n-1), computeDistances)
125 parallel::stopCluster(cl)
127 unlink(cwt_file) #remove binary file
129 Xwer_dist[,] #~small matrix K1 x K1