4b9a139f885cebdcd9ec122ac03fd2ee6a648051
1 // (Orthodox) Chess rules are defined in ChessRules class.
2 // Variants generally inherit from it, and modify some parts.
4 import { ArrayFun
} from "@/utils/array";
5 import { randInt
, shuffle
} from "@/utils/alea";
7 // class "PiPo": Piece + Position
8 export const PiPo
= class PiPo
{
9 // o: {piece[p], color[c], posX[x], posY[y]}
18 export const Move
= class Move
{
19 // o: {appear, vanish, [start,] [end,]}
20 // appear,vanish = arrays of PiPo
21 // start,end = coordinates to apply to trigger move visually (think castle)
23 this.appear
= o
.appear
;
24 this.vanish
= o
.vanish
;
25 this.start
= o
.start
? o
.start : { x: o
.vanish
[0].x
, y: o
.vanish
[0].y
};
26 this.end
= o
.end
? o
.end : { x: o
.appear
[0].x
, y: o
.appear
[0].y
};
30 // NOTE: x coords = top to bottom; y = left to right (from white player perspective)
31 export const ChessRules
= class ChessRules
{
35 // Some variants don't have flags:
36 static get HasFlags() {
40 // Some variants don't have en-passant
41 static get HasEnpassant() {
45 // Some variants cannot have analyse mode
46 static get CanAnalyze() {
49 // Patch: issues with javascript OOP, objects can't access static fields.
54 // Some variants show incomplete information,
55 // and thus show only a partial moves list or no list at all.
56 static get ShowMoves() {
63 // Turn "wb" into "B" (for FEN)
65 return b
[0] == "w" ? b
[1].toUpperCase() : b
[1];
68 // Turn "p" into "bp" (for board)
70 return f
.charCodeAt() <= 90 ? "w" + f
.toLowerCase() : "b" + f
;
73 // Check if FEN describe a board situation correctly
74 static IsGoodFen(fen
) {
75 const fenParsed
= V
.ParseFen(fen
);
77 if (!V
.IsGoodPosition(fenParsed
.position
)) return false;
79 if (!fenParsed
.turn
|| !V
.IsGoodTurn(fenParsed
.turn
)) return false;
80 // 3) Check moves count
81 if (!fenParsed
.movesCount
|| !(parseInt(fenParsed
.movesCount
) >= 0))
84 if (V
.HasFlags
&& (!fenParsed
.flags
|| !V
.IsGoodFlags(fenParsed
.flags
)))
89 (!fenParsed
.enpassant
|| !V
.IsGoodEnpassant(fenParsed
.enpassant
))
96 // Is position part of the FEN a priori correct?
97 static IsGoodPosition(position
) {
98 if (position
.length
== 0) return false;
99 const rows
= position
.split("/");
100 if (rows
.length
!= V
.size
.x
) return false;
102 for (let row
of rows
) {
104 for (let i
= 0; i
< row
.length
; i
++) {
105 if (['K','k'].includes(row
[i
]))
106 kings
[row
[i
]] = true;
107 if (V
.PIECES
.includes(row
[i
].toLowerCase())) sumElts
++;
109 const num
= parseInt(row
[i
]);
110 if (isNaN(num
)) return false;
114 if (sumElts
!= V
.size
.y
) return false;
116 // Both kings should be on board:
117 if (Object
.keys(kings
).length
!= 2)
123 static IsGoodTurn(turn
) {
124 return ["w", "b"].includes(turn
);
128 static IsGoodFlags(flags
) {
129 return !!flags
.match(/^[01]{4,4}$/);
132 static IsGoodEnpassant(enpassant
) {
133 if (enpassant
!= "-") {
134 const ep
= V
.SquareToCoords(enpassant
);
135 if (isNaN(ep
.x
) || !V
.OnBoard(ep
)) return false;
140 // 3 --> d (column number to letter)
141 static CoordToColumn(colnum
) {
142 return String
.fromCharCode(97 + colnum
);
145 // d --> 3 (column letter to number)
146 static ColumnToCoord(column
) {
147 return column
.charCodeAt(0) - 97;
151 static SquareToCoords(sq
) {
153 // NOTE: column is always one char => max 26 columns
154 // row is counted from black side => subtraction
155 x: V
.size
.x
- parseInt(sq
.substr(1)),
156 y: sq
[0].charCodeAt() - 97
161 static CoordsToSquare(coords
) {
162 return V
.CoordToColumn(coords
.y
) + (V
.size
.x
- coords
.x
);
167 return b
; //usual pieces in pieces/ folder
170 // Aggregates flags into one object
172 return this.castleFlags
;
176 disaggregateFlags(flags
) {
177 this.castleFlags
= flags
;
180 // En-passant square, if any
181 getEpSquare(moveOrSquare
) {
182 if (!moveOrSquare
) return undefined;
183 if (typeof moveOrSquare
=== "string") {
184 const square
= moveOrSquare
;
185 if (square
== "-") return undefined;
186 return V
.SquareToCoords(square
);
188 // Argument is a move:
189 const move = moveOrSquare
;
190 const [sx
, sy
, ex
] = [move.start
.x
, move.start
.y
, move.end
.x
];
191 // NOTE: next conditions are first for Atomic, and last for Checkered
193 move.appear
.length
> 0 &&
194 Math
.abs(sx
- ex
) == 2 &&
195 move.appear
[0].p
== V
.PAWN
&&
196 ["w", "b"].includes(move.appear
[0].c
)
203 return undefined; //default
206 // Can thing on square1 take thing on square2
207 canTake([x1
, y1
], [x2
, y2
]) {
208 return this.getColor(x1
, y1
) !== this.getColor(x2
, y2
);
211 // Is (x,y) on the chessboard?
212 static OnBoard(x
, y
) {
213 return x
>= 0 && x
< V
.size
.x
&& y
>= 0 && y
< V
.size
.y
;
216 // Used in interface: 'side' arg == player color
217 canIplay(side
, [x
, y
]) {
218 return this.turn
== side
&& this.getColor(x
, y
) == side
;
221 // On which squares is color under check ? (for interface)
222 getCheckSquares(color
) {
223 return this.isAttacked(this.kingPos
[color
], [V
.GetOppCol(color
)])
224 ? [JSON
.parse(JSON
.stringify(this.kingPos
[color
]))] //need to duplicate!
231 // Setup the initial random (assymetric) position
232 static GenRandInitFen() {
233 let pieces
= { w: new Array(8), b: new Array(8) };
234 // Shuffle pieces on first and last rank
235 for (let c
of ["w", "b"]) {
236 let positions
= ArrayFun
.range(8);
238 // Get random squares for bishops
239 let randIndex
= 2 * randInt(4);
240 const bishop1Pos
= positions
[randIndex
];
241 // The second bishop must be on a square of different color
242 let randIndex_tmp
= 2 * randInt(4) + 1;
243 const bishop2Pos
= positions
[randIndex_tmp
];
244 // Remove chosen squares
245 positions
.splice(Math
.max(randIndex
, randIndex_tmp
), 1);
246 positions
.splice(Math
.min(randIndex
, randIndex_tmp
), 1);
248 // Get random squares for knights
249 randIndex
= randInt(6);
250 const knight1Pos
= positions
[randIndex
];
251 positions
.splice(randIndex
, 1);
252 randIndex
= randInt(5);
253 const knight2Pos
= positions
[randIndex
];
254 positions
.splice(randIndex
, 1);
256 // Get random square for queen
257 randIndex
= randInt(4);
258 const queenPos
= positions
[randIndex
];
259 positions
.splice(randIndex
, 1);
261 // Rooks and king positions are now fixed,
262 // because of the ordering rook-king-rook
263 const rook1Pos
= positions
[0];
264 const kingPos
= positions
[1];
265 const rook2Pos
= positions
[2];
267 // Finally put the shuffled pieces in the board array
268 pieces
[c
][rook1Pos
] = "r";
269 pieces
[c
][knight1Pos
] = "n";
270 pieces
[c
][bishop1Pos
] = "b";
271 pieces
[c
][queenPos
] = "q";
272 pieces
[c
][kingPos
] = "k";
273 pieces
[c
][bishop2Pos
] = "b";
274 pieces
[c
][knight2Pos
] = "n";
275 pieces
[c
][rook2Pos
] = "r";
277 // Add turn + flags + enpassant
279 pieces
["b"].join("") +
280 "/pppppppp/8/8/8/8/PPPPPPPP/" +
281 pieces
["w"].join("").toUpperCase() +
286 // "Parse" FEN: just return untransformed string data
287 static ParseFen(fen
) {
288 const fenParts
= fen
.split(" ");
290 position: fenParts
[0],
292 movesCount: fenParts
[2]
295 if (V
.HasFlags
) Object
.assign(res
, { flags: fenParts
[nextIdx
++] });
296 if (V
.HasEnpassant
) Object
.assign(res
, { enpassant: fenParts
[nextIdx
] });
300 // Return current fen (game state)
308 (V
.HasFlags
? " " + this.getFlagsFen() : "") +
309 (V
.HasEnpassant
? " " + this.getEnpassantFen() : "")
313 // Position part of the FEN string
316 for (let i
= 0; i
< V
.size
.x
; i
++) {
318 for (let j
= 0; j
< V
.size
.y
; j
++) {
319 if (this.board
[i
][j
] == V
.EMPTY
) emptyCount
++;
321 if (emptyCount
> 0) {
322 // Add empty squares in-between
323 position
+= emptyCount
;
326 position
+= V
.board2fen(this.board
[i
][j
]);
329 if (emptyCount
> 0) {
331 position
+= emptyCount
;
333 if (i
< V
.size
.x
- 1) position
+= "/"; //separate rows
342 // Flags part of the FEN string
345 // Add castling flags
346 for (let i
of ["w", "b"]) {
347 for (let j
= 0; j
< 2; j
++) flags
+= this.castleFlags
[i
][j
] ? "1" : "0";
352 // Enpassant part of the FEN string
354 const L
= this.epSquares
.length
;
355 if (!this.epSquares
[L
- 1]) return "-"; //no en-passant
356 return V
.CoordsToSquare(this.epSquares
[L
- 1]);
359 // Turn position fen into double array ["wb","wp","bk",...]
360 static GetBoard(position
) {
361 const rows
= position
.split("/");
362 let board
= ArrayFun
.init(V
.size
.x
, V
.size
.y
, "");
363 for (let i
= 0; i
< rows
.length
; i
++) {
365 for (let indexInRow
= 0; indexInRow
< rows
[i
].length
; indexInRow
++) {
366 const character
= rows
[i
][indexInRow
];
367 const num
= parseInt(character
);
368 // If num is a number, just shift j:
369 if (!isNaN(num
)) j
+= num
;
370 // Else: something at position i,j
371 else board
[i
][j
++] = V
.fen2board(character
);
377 // Extract (relevant) flags from fen
379 // white a-castle, h-castle, black a-castle, h-castle
380 this.castleFlags
= { w: [true, true], b: [true, true] };
381 if (!fenflags
) return;
382 for (let i
= 0; i
< 4; i
++)
383 this.castleFlags
[i
< 2 ? "w" : "b"][i
% 2] = fenflags
.charAt(i
) == "1";
390 // In printDiagram() fen isn't supply because only getPpath() is used
395 // Fen string fully describes the game state
397 const fenParsed
= V
.ParseFen(fen
);
398 this.board
= V
.GetBoard(fenParsed
.position
);
399 this.turn
= fenParsed
.turn
[0]; //[0] to work with MarseilleRules
400 this.movesCount
= parseInt(fenParsed
.movesCount
);
401 this.setOtherVariables(fen
);
404 // Scan board for kings and rooks positions
405 scanKingsRooks(fen
) {
406 this.INIT_COL_KING
= { w: -1, b: -1 };
407 this.INIT_COL_ROOK
= { w: [-1, -1], b: [-1, -1] };
408 this.kingPos
= { w: [-1, -1], b: [-1, -1] }; //squares of white and black king
409 const fenRows
= V
.ParseFen(fen
).position
.split("/");
410 for (let i
= 0; i
< fenRows
.length
; i
++) {
411 let k
= 0; //column index on board
412 for (let j
= 0; j
< fenRows
[i
].length
; j
++) {
413 switch (fenRows
[i
].charAt(j
)) {
415 this.kingPos
["b"] = [i
, k
];
416 this.INIT_COL_KING
["b"] = k
;
419 this.kingPos
["w"] = [i
, k
];
420 this.INIT_COL_KING
["w"] = k
;
423 if (this.INIT_COL_ROOK
["b"][0] < 0) this.INIT_COL_ROOK
["b"][0] = k
;
424 else this.INIT_COL_ROOK
["b"][1] = k
;
427 if (this.INIT_COL_ROOK
["w"][0] < 0) this.INIT_COL_ROOK
["w"][0] = k
;
428 else this.INIT_COL_ROOK
["w"][1] = k
;
431 const num
= parseInt(fenRows
[i
].charAt(j
));
432 if (!isNaN(num
)) k
+= num
- 1;
440 // Some additional variables from FEN (variant dependant)
441 setOtherVariables(fen
) {
442 // Set flags and enpassant:
443 const parsedFen
= V
.ParseFen(fen
);
444 if (V
.HasFlags
) this.setFlags(parsedFen
.flags
);
445 if (V
.HasEnpassant
) {
447 parsedFen
.enpassant
!= "-"
448 ? this.getEpSquare(parsedFen
.enpassant
)
450 this.epSquares
= [epSq
];
452 // Search for king and rooks positions:
453 this.scanKingsRooks(fen
);
456 /////////////////////
460 return { x: 8, y: 8 };
463 // Color of thing on suqare (i,j). 'undefined' if square is empty
465 return this.board
[i
][j
].charAt(0);
468 // Piece type on square (i,j). 'undefined' if square is empty
470 return this.board
[i
][j
].charAt(1);
473 // Get opponent color
474 static GetOppCol(color
) {
475 return color
== "w" ? "b" : "w";
478 // Pieces codes (for a clearer code)
485 static get KNIGHT() {
488 static get BISHOP() {
499 static get PIECES() {
500 return [V
.PAWN
, V
.ROOK
, V
.KNIGHT
, V
.BISHOP
, V
.QUEEN
, V
.KING
];
508 // Some pieces movements
539 // All possible moves from selected square (assumption: color is OK)
540 getPotentialMovesFrom([x
, y
]) {
541 switch (this.getPiece(x
, y
)) {
543 return this.getPotentialPawnMoves([x
, y
]);
545 return this.getPotentialRookMoves([x
, y
]);
547 return this.getPotentialKnightMoves([x
, y
]);
549 return this.getPotentialBishopMoves([x
, y
]);
551 return this.getPotentialQueenMoves([x
, y
]);
553 return this.getPotentialKingMoves([x
, y
]);
555 return []; //never reached
558 // Build a regular move from its initial and destination squares.
559 // tr: transformation
560 getBasicMove([sx
, sy
], [ex
, ey
], tr
) {
566 c: tr
? tr
.c : this.getColor(sx
, sy
),
567 p: tr
? tr
.p : this.getPiece(sx
, sy
)
574 c: this.getColor(sx
, sy
),
575 p: this.getPiece(sx
, sy
)
580 // The opponent piece disappears if we take it
581 if (this.board
[ex
][ey
] != V
.EMPTY
) {
586 c: this.getColor(ex
, ey
),
587 p: this.getPiece(ex
, ey
)
594 // Generic method to find possible moves of non-pawn pieces:
595 // "sliding or jumping"
596 getSlideNJumpMoves([x
, y
], steps
, oneStep
) {
598 outerLoop: for (let step
of steps
) {
601 while (V
.OnBoard(i
, j
) && this.board
[i
][j
] == V
.EMPTY
) {
602 moves
.push(this.getBasicMove([x
, y
], [i
, j
]));
603 if (oneStep
!== undefined) continue outerLoop
;
607 if (V
.OnBoard(i
, j
) && this.canTake([x
, y
], [i
, j
]))
608 moves
.push(this.getBasicMove([x
, y
], [i
, j
]));
613 // What are the pawn moves from square x,y ?
614 getPotentialPawnMoves([x
, y
]) {
615 const color
= this.turn
;
617 const [sizeX
, sizeY
] = [V
.size
.x
, V
.size
.y
];
618 const shiftX
= color
== "w" ? -1 : 1;
619 const firstRank
= color
== "w" ? sizeX
- 1 : 0;
620 const startRank
= color
== "w" ? sizeX
- 2 : 1;
621 const lastRank
= color
== "w" ? 0 : sizeX
- 1;
622 const pawnColor
= this.getColor(x
, y
); //can be different for checkered
624 // NOTE: next condition is generally true (no pawn on last rank)
625 if (x
+ shiftX
>= 0 && x
+ shiftX
< sizeX
) {
627 x
+ shiftX
== lastRank
628 ? [V
.ROOK
, V
.KNIGHT
, V
.BISHOP
, V
.QUEEN
]
630 // One square forward
631 if (this.board
[x
+ shiftX
][y
] == V
.EMPTY
) {
632 for (let piece
of finalPieces
) {
634 this.getBasicMove([x
, y
], [x
+ shiftX
, y
], {
640 // Next condition because pawns on 1st rank can generally jump
642 [startRank
, firstRank
].includes(x
) &&
643 this.board
[x
+ 2 * shiftX
][y
] == V
.EMPTY
646 moves
.push(this.getBasicMove([x
, y
], [x
+ 2 * shiftX
, y
]));
650 for (let shiftY
of [-1, 1]) {
653 y
+ shiftY
< sizeY
&&
654 this.board
[x
+ shiftX
][y
+ shiftY
] != V
.EMPTY
&&
655 this.canTake([x
, y
], [x
+ shiftX
, y
+ shiftY
])
657 for (let piece
of finalPieces
) {
659 this.getBasicMove([x
, y
], [x
+ shiftX
, y
+ shiftY
], {
669 if (V
.HasEnpassant
) {
671 const Lep
= this.epSquares
.length
;
672 const epSquare
= this.epSquares
[Lep
- 1]; //always at least one element
675 epSquare
.x
== x
+ shiftX
&&
676 Math
.abs(epSquare
.y
- y
) == 1
678 let enpassantMove
= this.getBasicMove([x
, y
], [epSquare
.x
, epSquare
.y
]);
679 enpassantMove
.vanish
.push({
683 c: this.getColor(x
, epSquare
.y
)
685 moves
.push(enpassantMove
);
692 // What are the rook moves from square x,y ?
693 getPotentialRookMoves(sq
) {
694 return this.getSlideNJumpMoves(sq
, V
.steps
[V
.ROOK
]);
697 // What are the knight moves from square x,y ?
698 getPotentialKnightMoves(sq
) {
699 return this.getSlideNJumpMoves(sq
, V
.steps
[V
.KNIGHT
], "oneStep");
702 // What are the bishop moves from square x,y ?
703 getPotentialBishopMoves(sq
) {
704 return this.getSlideNJumpMoves(sq
, V
.steps
[V
.BISHOP
]);
707 // What are the queen moves from square x,y ?
708 getPotentialQueenMoves(sq
) {
709 return this.getSlideNJumpMoves(
711 V
.steps
[V
.ROOK
].concat(V
.steps
[V
.BISHOP
])
715 // What are the king moves from square x,y ?
716 getPotentialKingMoves(sq
) {
717 // Initialize with normal moves
718 let moves
= this.getSlideNJumpMoves(
720 V
.steps
[V
.ROOK
].concat(V
.steps
[V
.BISHOP
]),
723 return moves
.concat(this.getCastleMoves(sq
));
726 getCastleMoves([x
, y
]) {
727 const c
= this.getColor(x
, y
);
728 if (x
!= (c
== "w" ? V
.size
.x
- 1 : 0) || y
!= this.INIT_COL_KING
[c
])
729 return []; //x isn't first rank, or king has moved (shortcut)
732 const oppCol
= V
.GetOppCol(c
);
736 const finalSquares
= [
738 [V
.size
.y
- 2, V
.size
.y
- 3]
743 castleSide
++ //large, then small
745 if (!this.castleFlags
[c
][castleSide
]) continue;
746 // If this code is reached, rooks and king are on initial position
748 // Nothing on the path of the king ? (and no checks)
749 const finDist
= finalSquares
[castleSide
][0] - y
;
750 let step
= finDist
/ Math
.max(1, Math
.abs(finDist
));
754 this.isAttacked([x
, i
], [oppCol
]) ||
755 (this.board
[x
][i
] != V
.EMPTY
&&
756 // NOTE: next check is enough, because of chessboard constraints
757 (this.getColor(x
, i
) != c
||
758 ![V
.KING
, V
.ROOK
].includes(this.getPiece(x
, i
))))
760 continue castlingCheck
;
763 } while (i
!= finalSquares
[castleSide
][0]);
765 // Nothing on the path to the rook?
766 step
= castleSide
== 0 ? -1 : 1;
767 for (i
= y
+ step
; i
!= this.INIT_COL_ROOK
[c
][castleSide
]; i
+= step
) {
768 if (this.board
[x
][i
] != V
.EMPTY
) continue castlingCheck
;
770 const rookPos
= this.INIT_COL_ROOK
[c
][castleSide
];
772 // Nothing on final squares, except maybe king and castling rook?
773 for (i
= 0; i
< 2; i
++) {
775 this.board
[x
][finalSquares
[castleSide
][i
]] != V
.EMPTY
&&
776 this.getPiece(x
, finalSquares
[castleSide
][i
]) != V
.KING
&&
777 finalSquares
[castleSide
][i
] != rookPos
779 continue castlingCheck
;
783 // If this code is reached, castle is valid
787 new PiPo({ x: x
, y: finalSquares
[castleSide
][0], p: V
.KING
, c: c
}),
788 new PiPo({ x: x
, y: finalSquares
[castleSide
][1], p: V
.ROOK
, c: c
})
791 new PiPo({ x: x
, y: y
, p: V
.KING
, c: c
}),
792 new PiPo({ x: x
, y: rookPos
, p: V
.ROOK
, c: c
})
795 Math
.abs(y
- rookPos
) <= 2
796 ? { x: x
, y: rookPos
}
797 : { x: x
, y: y
+ 2 * (castleSide
== 0 ? -1 : 1) }
808 // For the interface: possible moves for the current turn from square sq
809 getPossibleMovesFrom(sq
) {
810 return this.filterValid(this.getPotentialMovesFrom(sq
));
813 // TODO: promotions (into R,B,N,Q) should be filtered only once
815 if (moves
.length
== 0) return [];
816 const color
= this.turn
;
817 return moves
.filter(m
=> {
819 const res
= !this.underCheck(color
);
825 // Search for all valid moves considering current turn
826 // (for engine and game end)
828 const color
= this.turn
;
829 const oppCol
= V
.GetOppCol(color
);
830 let potentialMoves
= [];
831 for (let i
= 0; i
< V
.size
.x
; i
++) {
832 for (let j
= 0; j
< V
.size
.y
; j
++) {
833 // Next condition "!= oppCol" to work with checkered variant
834 if (this.board
[i
][j
] != V
.EMPTY
&& this.getColor(i
, j
) != oppCol
) {
835 Array
.prototype.push
.apply(
837 this.getPotentialMovesFrom([i
, j
])
842 return this.filterValid(potentialMoves
);
845 // Stop at the first move found
847 const color
= this.turn
;
848 const oppCol
= V
.GetOppCol(color
);
849 for (let i
= 0; i
< V
.size
.x
; i
++) {
850 for (let j
= 0; j
< V
.size
.y
; j
++) {
851 if (this.board
[i
][j
] != V
.EMPTY
&& this.getColor(i
, j
) != oppCol
) {
852 const moves
= this.getPotentialMovesFrom([i
, j
]);
853 if (moves
.length
> 0) {
854 for (let k
= 0; k
< moves
.length
; k
++) {
855 if (this.filterValid([moves
[k
]]).length
> 0) return true;
864 // Check if pieces of color in 'colors' are attacking (king) on square x,y
865 isAttacked(sq
, colors
) {
867 this.isAttackedByPawn(sq
, colors
) ||
868 this.isAttackedByRook(sq
, colors
) ||
869 this.isAttackedByKnight(sq
, colors
) ||
870 this.isAttackedByBishop(sq
, colors
) ||
871 this.isAttackedByQueen(sq
, colors
) ||
872 this.isAttackedByKing(sq
, colors
)
876 // Is square x,y attacked by 'colors' pawns ?
877 isAttackedByPawn([x
, y
], colors
) {
878 for (let c
of colors
) {
879 let pawnShift
= c
== "w" ? 1 : -1;
880 if (x
+ pawnShift
>= 0 && x
+ pawnShift
< V
.size
.x
) {
881 for (let i
of [-1, 1]) {
885 this.getPiece(x
+ pawnShift
, y
+ i
) == V
.PAWN
&&
886 this.getColor(x
+ pawnShift
, y
+ i
) == c
896 // Is square x,y attacked by 'colors' rooks ?
897 isAttackedByRook(sq
, colors
) {
898 return this.isAttackedBySlideNJump(sq
, colors
, V
.ROOK
, V
.steps
[V
.ROOK
]);
901 // Is square x,y attacked by 'colors' knights ?
902 isAttackedByKnight(sq
, colors
) {
903 return this.isAttackedBySlideNJump(
912 // Is square x,y attacked by 'colors' bishops ?
913 isAttackedByBishop(sq
, colors
) {
914 return this.isAttackedBySlideNJump(sq
, colors
, V
.BISHOP
, V
.steps
[V
.BISHOP
]);
917 // Is square x,y attacked by 'colors' queens ?
918 isAttackedByQueen(sq
, colors
) {
919 return this.isAttackedBySlideNJump(
923 V
.steps
[V
.ROOK
].concat(V
.steps
[V
.BISHOP
])
927 // Is square x,y attacked by 'colors' king(s) ?
928 isAttackedByKing(sq
, colors
) {
929 return this.isAttackedBySlideNJump(
933 V
.steps
[V
.ROOK
].concat(V
.steps
[V
.BISHOP
]),
938 // Generic method for non-pawn pieces ("sliding or jumping"):
939 // is x,y attacked by a piece of color in array 'colors' ?
940 isAttackedBySlideNJump([x
, y
], colors
, piece
, steps
, oneStep
) {
941 for (let step
of steps
) {
942 let rx
= x
+ step
[0],
944 while (V
.OnBoard(rx
, ry
) && this.board
[rx
][ry
] == V
.EMPTY
&& !oneStep
) {
950 this.getPiece(rx
, ry
) === piece
&&
951 colors
.includes(this.getColor(rx
, ry
))
959 // Is color under check after his move ?
961 return this.isAttacked(this.kingPos
[color
], [V
.GetOppCol(color
)]);
967 // Apply a move on board
968 static PlayOnBoard(board
, move) {
969 for (let psq
of move.vanish
) board
[psq
.x
][psq
.y
] = V
.EMPTY
;
970 for (let psq
of move.appear
) board
[psq
.x
][psq
.y
] = psq
.c
+ psq
.p
;
972 // Un-apply the played move
973 static UndoOnBoard(board
, move) {
974 for (let psq
of move.appear
) board
[psq
.x
][psq
.y
] = V
.EMPTY
;
975 for (let psq
of move.vanish
) board
[psq
.x
][psq
.y
] = psq
.c
+ psq
.p
;
978 // After move is played, update variables + flags
979 updateVariables(move) {
980 let piece
= undefined;
981 // TODO: update variables before move is played, and just use this.turn ?
982 // (doesn't work in general, think MarseilleChess)
984 if (move.vanish
.length
>= 1) {
985 // Usual case, something is moved
986 piece
= move.vanish
[0].p
;
987 c
= move.vanish
[0].c
;
989 // Crazyhouse-like variants
990 piece
= move.appear
[0].p
;
991 c
= move.appear
[0].c
;
993 if (!['w','b'].includes(c
)) {
994 // Checkered, for example
995 c
= V
.GetOppCol(this.turn
);
997 const firstRank
= c
== "w" ? V
.size
.x
- 1 : 0;
999 // Update king position + flags
1000 if (piece
== V
.KING
&& move.appear
.length
> 0) {
1001 this.kingPos
[c
][0] = move.appear
[0].x
;
1002 this.kingPos
[c
][1] = move.appear
[0].y
;
1003 if (V
.HasFlags
) this.castleFlags
[c
] = [false, false];
1007 // Update castling flags if rooks are moved
1008 const oppCol
= V
.GetOppCol(c
);
1009 const oppFirstRank
= V
.size
.x
- 1 - firstRank
;
1011 move.start
.x
== firstRank
&& //our rook moves?
1012 this.INIT_COL_ROOK
[c
].includes(move.start
.y
)
1014 const flagIdx
= move.start
.y
== this.INIT_COL_ROOK
[c
][0] ? 0 : 1;
1015 this.castleFlags
[c
][flagIdx
] = false;
1017 move.end
.x
== oppFirstRank
&& //we took opponent rook?
1018 this.INIT_COL_ROOK
[oppCol
].includes(move.end
.y
)
1020 const flagIdx
= move.end
.y
== this.INIT_COL_ROOK
[oppCol
][0] ? 0 : 1;
1021 this.castleFlags
[oppCol
][flagIdx
] = false;
1026 // After move is undo-ed *and flags resetted*, un-update other variables
1027 // TODO: more symmetry, by storing flags increment in move (?!)
1028 unupdateVariables(move) {
1029 // (Potentially) Reset king position
1030 const c
= this.getColor(move.start
.x
, move.start
.y
);
1031 if (this.getPiece(move.start
.x
, move.start
.y
) == V
.KING
)
1032 this.kingPos
[c
] = [move.start
.x
, move.start
.y
];
1037 // if (!this.states) this.states = [];
1038 // const stateFen = this.getBaseFen() + this.getTurnFen() + this.getFlagsFen();
1039 // this.states.push(stateFen);
1041 if (V
.HasFlags
) move.flags
= JSON
.stringify(this.aggregateFlags()); //save flags (for undo)
1042 if (V
.HasEnpassant
) this.epSquares
.push(this.getEpSquare(move));
1043 V
.PlayOnBoard(this.board
, move);
1044 this.turn
= V
.GetOppCol(this.turn
);
1046 this.updateVariables(move);
1050 if (V
.HasEnpassant
) this.epSquares
.pop();
1051 if (V
.HasFlags
) this.disaggregateFlags(JSON
.parse(move.flags
));
1052 V
.UndoOnBoard(this.board
, move);
1053 this.turn
= V
.GetOppCol(this.turn
);
1055 this.unupdateVariables(move);
1058 // const stateFen = this.getBaseFen() + this.getTurnFen() + this.getFlagsFen();
1059 // if (stateFen != this.states[this.states.length-1]) debugger;
1060 // this.states.pop();
1066 // What is the score ? (Interesting if game is over)
1068 if (this.atLeastOneMove())
1072 const color
= this.turn
;
1073 // No valid move: stalemate or checkmate?
1074 if (!this.isAttacked(this.kingPos
[color
], [V
.GetOppCol(color
)]))
1077 return color
== "w" ? "0-1" : "1-0";
1084 static get VALUES() {
1095 // "Checkmate" (unreachable eval)
1096 static get INFINITY() {
1100 // At this value or above, the game is over
1101 static get THRESHOLD_MATE() {
1105 // Search depth: 2 for high branching factor, 4 for small (Loser chess, eg.)
1106 static get SEARCH_DEPTH() {
1110 // NOTE: works also for extinction chess because depth is 3...
1112 const maxeval
= V
.INFINITY
;
1113 const color
= this.turn
;
1114 // Some variants may show a bigger moves list to the human (Switching),
1115 // thus the argument "computer" below (which is generally ignored)
1116 let moves1
= this.getAllValidMoves("computer");
1117 if (moves1
.length
== 0)
1118 //TODO: this situation should not happen
1121 // Can I mate in 1 ? (for Magnetic & Extinction)
1122 for (let i
of shuffle(ArrayFun
.range(moves1
.length
))) {
1123 this.play(moves1
[i
]);
1124 let finish
= Math
.abs(this.evalPosition()) >= V
.THRESHOLD_MATE
;
1126 const score
= this.getCurrentScore();
1127 if (["1-0", "0-1"].includes(score
)) finish
= true;
1129 this.undo(moves1
[i
]);
1130 if (finish
) return moves1
[i
];
1133 // Rank moves using a min-max at depth 2
1134 for (let i
= 0; i
< moves1
.length
; i
++) {
1135 // Initial self evaluation is very low: "I'm checkmated"
1136 moves1
[i
].eval
= (color
== "w" ? -1 : 1) * maxeval
;
1137 this.play(moves1
[i
]);
1138 const score1
= this.getCurrentScore();
1139 let eval2
= undefined;
1140 if (score1
== "*") {
1141 // Initial enemy evaluation is very low too, for him
1142 eval2
= (color
== "w" ? 1 : -1) * maxeval
;
1143 // Second half-move:
1144 let moves2
= this.getAllValidMoves("computer");
1145 for (let j
= 0; j
< moves2
.length
; j
++) {
1146 this.play(moves2
[j
]);
1147 const score2
= this.getCurrentScore();
1148 let evalPos
= 0; //1/2 value
1151 evalPos
= this.evalPosition();
1161 (color
== "w" && evalPos
< eval2
) ||
1162 (color
== "b" && evalPos
> eval2
)
1166 this.undo(moves2
[j
]);
1168 } else eval2
= score1
== "1/2" ? 0 : (score1
== "1-0" ? 1 : -1) * maxeval
;
1170 (color
== "w" && eval2
> moves1
[i
].eval
) ||
1171 (color
== "b" && eval2
< moves1
[i
].eval
)
1173 moves1
[i
].eval
= eval2
;
1175 this.undo(moves1
[i
]);
1177 moves1
.sort((a
, b
) => {
1178 return (color
== "w" ? 1 : -1) * (b
.eval
- a
.eval
);
1181 let candidates
= [0]; //indices of candidates moves
1182 for (let j
= 1; j
< moves1
.length
&& moves1
[j
].eval
== moves1
[0].eval
; j
++)
1184 let currentBest
= moves1
[candidates
[randInt(candidates
.length
)]];
1186 // Skip depth 3+ if we found a checkmate (or if we are checkmated in 1...)
1187 if (V
.SEARCH_DEPTH
>= 3 && Math
.abs(moves1
[0].eval
) < V
.THRESHOLD_MATE
) {
1188 // From here, depth >= 3: may take a while, so we control time
1189 const timeStart
= Date
.now();
1190 for (let i
= 0; i
< moves1
.length
; i
++) {
1191 if (Date
.now() - timeStart
>= 5000)
1192 //more than 5 seconds
1193 return currentBest
; //depth 2 at least
1194 this.play(moves1
[i
]);
1195 // 0.1 * oldEval : heuristic to avoid some bad moves (not all...)
1197 0.1 * moves1
[i
].eval
+
1198 this.alphabeta(V
.SEARCH_DEPTH
- 1, -maxeval
, maxeval
);
1199 this.undo(moves1
[i
]);
1201 moves1
.sort((a
, b
) => {
1202 return (color
== "w" ? 1 : -1) * (b
.eval
- a
.eval
);
1204 } else return currentBest
;
1205 // console.log(moves1.map(m => { return [this.getNotation(m), m.eval]; }));
1208 for (let j
= 1; j
< moves1
.length
&& moves1
[j
].eval
== moves1
[0].eval
; j
++)
1210 return moves1
[candidates
[randInt(candidates
.length
)]];
1213 alphabeta(depth
, alpha
, beta
) {
1214 const maxeval
= V
.INFINITY
;
1215 const color
= this.turn
;
1216 const score
= this.getCurrentScore();
1218 return score
== "1/2" ? 0 : (score
== "1-0" ? 1 : -1) * maxeval
;
1219 if (depth
== 0) return this.evalPosition();
1220 const moves
= this.getAllValidMoves("computer");
1221 let v
= color
== "w" ? -maxeval : maxeval
;
1223 for (let i
= 0; i
< moves
.length
; i
++) {
1224 this.play(moves
[i
]);
1225 v
= Math
.max(v
, this.alphabeta(depth
- 1, alpha
, beta
));
1226 this.undo(moves
[i
]);
1227 alpha
= Math
.max(alpha
, v
);
1228 if (alpha
>= beta
) break; //beta cutoff
1232 for (let i
= 0; i
< moves
.length
; i
++) {
1233 this.play(moves
[i
]);
1234 v
= Math
.min(v
, this.alphabeta(depth
- 1, alpha
, beta
));
1235 this.undo(moves
[i
]);
1236 beta
= Math
.min(beta
, v
);
1237 if (alpha
>= beta
) break; //alpha cutoff
1245 // Just count material for now
1246 for (let i
= 0; i
< V
.size
.x
; i
++) {
1247 for (let j
= 0; j
< V
.size
.y
; j
++) {
1248 if (this.board
[i
][j
] != V
.EMPTY
) {
1249 const sign
= this.getColor(i
, j
) == "w" ? 1 : -1;
1250 evaluation
+= sign
* V
.VALUES
[this.getPiece(i
, j
)];
1257 /////////////////////////
1258 // MOVES + GAME NOTATION
1259 /////////////////////////
1261 // Context: just before move is played, turn hasn't changed
1262 // TODO: un-ambiguous notation (switch on piece type, check directions...)
1264 if (move.appear
.length
== 2 && move.appear
[0].p
== V
.KING
)
1266 return move.end
.y
< move.start
.y
? "0-0-0" : "0-0";
1268 // Translate final square
1269 const finalSquare
= V
.CoordsToSquare(move.end
);
1271 const piece
= this.getPiece(move.start
.x
, move.start
.y
);
1272 if (piece
== V
.PAWN
) {
1275 if (move.vanish
.length
> move.appear
.length
) {
1277 const startColumn
= V
.CoordToColumn(move.start
.y
);
1278 notation
= startColumn
+ "x" + finalSquare
;
1280 else notation
= finalSquare
;
1281 if (move.appear
.length
> 0 && move.appear
[0].p
!= V
.PAWN
)
1283 notation
+= "=" + move.appear
[0].p
.toUpperCase();
1288 piece
.toUpperCase() +
1289 (move.vanish
.length
> move.appear
.length
? "x" : "") +