| 1 | #' valse |
| 2 | #' |
| 3 | #' Main function |
| 4 | #' |
| 5 | #' @param X matrix of covariates (of size n*p) |
| 6 | #' @param Y matrix of responses (of size n*m) |
| 7 | #' @param procedure among 'LassoMLE' or 'LassoRank' |
| 8 | #' @param selecMod method to select a model among 'DDSE', 'DJump', 'BIC' or 'AIC' |
| 9 | #' @param gamma integer for the power in the penaly, by default = 1 |
| 10 | #' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10 |
| 11 | #' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100 |
| 12 | #' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4 |
| 13 | #' @param kmin integer, minimum number of clusters, by default = 2 |
| 14 | #' @param kmax integer, maximum number of clusters, by default = 10 |
| 15 | #' @param rang.min integer, minimum rank in the low rank procedure, by default = 1 |
| 16 | #' @param rang.max integer, maximum rank in the |
| 17 | #' |
| 18 | #' @return a list with estimators of parameters |
| 19 | #' |
| 20 | #' @examples |
| 21 | #' #TODO: a few examples |
| 22 | #' @export |
| 23 | valse = function(X, Y, procedure='LassoMLE', selecMod='DDSE', gamma=1, mini=10, maxi=50, |
| 24 | eps=1e-4, kmin=2, kmax=2, rang.min=1, rang.max=10, ncores_outer=1, ncores_inner=3, |
| 25 | verbose=FALSE) |
| 26 | { |
| 27 | p = dim(X)[2] |
| 28 | m = dim(Y)[2] |
| 29 | n = dim(X)[1] |
| 30 | |
| 31 | if (verbose) |
| 32 | print("main loop: over all k and all lambda") |
| 33 | |
| 34 | if (ncores_outer > 1) |
| 35 | { |
| 36 | cl = parallel::makeCluster(ncores_outer) |
| 37 | parallel::clusterExport( cl=cl, envir=environment(), varlist=c("X","Y","procedure", |
| 38 | "selecMod","gamma","mini","maxi","eps","kmin","kmax","rang.min","rang.max", |
| 39 | "ncores_outer","ncores_inner","verbose","p","m","k","tableauRecap") ) |
| 40 | } |
| 41 | |
| 42 | # Compute models with k components |
| 43 | computeModels <- function(k) |
| 44 | { |
| 45 | if (ncores_outer > 1) |
| 46 | require("valse") #nodes start with an empty environment |
| 47 | |
| 48 | if (verbose) |
| 49 | print(paste("Parameters initialization for k =",k)) |
| 50 | #smallEM initializes parameters by k-means and regression model in each component, |
| 51 | #doing this 20 times, and keeping the values maximizing the likelihood after 10 |
| 52 | #iterations of the EM algorithm. |
| 53 | P = initSmallEM(k, X, Y) |
| 54 | grid_lambda <- computeGridLambda(P$phiInit, P$rhoInit, P$piInit, P$gamInit, X, Y, |
| 55 | gamma, mini, maxi, eps) |
| 56 | # TODO: 100 = magic number |
| 57 | if (length(grid_lambda)>100) |
| 58 | grid_lambda = grid_lambda[seq(1, length(grid_lambda), length.out = 100)] |
| 59 | |
| 60 | if (verbose) |
| 61 | print("Compute relevant parameters") |
| 62 | #select variables according to each regularization parameter |
| 63 | #from the grid: S$selected corresponding to selected variables |
| 64 | S = selectVariables(P$phiInit, P$rhoInit, P$piInit, P$gamInit, mini, maxi, gamma, |
| 65 | grid_lambda, X, Y, 1e-8, eps, ncores_inner) #TODO: 1e-8 as arg?! eps? |
| 66 | |
| 67 | if (procedure == 'LassoMLE') |
| 68 | { |
| 69 | if (verbose) |
| 70 | print('run the procedure Lasso-MLE') |
| 71 | #compute parameter estimations, with the Maximum Likelihood |
| 72 | #Estimator, restricted on selected variables. |
| 73 | models <- constructionModelesLassoMLE(phiInit, rhoInit, piInit, gamInit, mini, |
| 74 | maxi, gamma, X, Y, thresh, eps, S$selected, ncores_inner, verbose) |
| 75 | } |
| 76 | else |
| 77 | { |
| 78 | if (verbose) |
| 79 | print('run the procedure Lasso-Rank') |
| 80 | #compute parameter estimations, with the Low Rank |
| 81 | #Estimator, restricted on selected variables. |
| 82 | models <- constructionModelesLassoRank(S$Pi, S$Rho, mini, maxi, X, Y, eps, A1, |
| 83 | rank.min, rank.max, ncores_inner, verbose) |
| 84 | } |
| 85 | models |
| 86 | } |
| 87 | |
| 88 | # List (index k) of lists (index lambda) of models |
| 89 | models_list <- |
| 90 | #if (ncores_k > 1) |
| 91 | if (ncores_outer > 1) |
| 92 | parLapply(cl, kmin:kmax, computeModels) |
| 93 | else |
| 94 | lapply(kmin:kmax, computeModels) |
| 95 | #if (ncores_k > 1) |
| 96 | if (ncores_outer > 1) |
| 97 | parallel::stopCluster(cl) |
| 98 | |
| 99 | if (! requireNamespace("capushe", quietly=TRUE)) |
| 100 | { |
| 101 | warning("'capushe' not available: returning all models") |
| 102 | return (models_list) |
| 103 | } |
| 104 | |
| 105 | # Get summary "tableauRecap" from models ; TODO: jusqu'à ligne 114 à mon avis là c'est faux :/ |
| 106 | tableauRecap = t( sapply( models_list, function(models) { |
| 107 | llh = do.call(rbind, lapply(models, function(model) model$llh)) |
| 108 | LLH = llh[-1,1] |
| 109 | D = llh[-1,2] |
| 110 | c(LLH, D, rep(k, length(model)), 1:length(model)) |
| 111 | } )) |
| 112 | if (verbose) |
| 113 | print('Model selection') |
| 114 | tableauRecap = tableauRecap[rowSums(tableauRecap[, 2:4])!=0,] |
| 115 | tableauRecap = tableauRecap[!is.infinite(tableauRecap[,1]),] |
| 116 | data = cbind(1:dim(tableauRecap)[1], tableauRecap[,2], tableauRecap[,2], tableauRecap[,1]) |
| 117 | |
| 118 | modSel = capushe::capushe(data, n) |
| 119 | indModSel <- |
| 120 | if (selecMod == 'DDSE') |
| 121 | as.numeric(modSel@DDSE@model) |
| 122 | else if (selecMod == 'Djump') |
| 123 | as.numeric(modSel@Djump@model) |
| 124 | else if (selecMod == 'BIC') |
| 125 | modSel@BIC_capushe$model |
| 126 | else if (selecMod == 'AIC') |
| 127 | modSel@AIC_capushe$model |
| 128 | model[[tableauRecap[indModSel,3]]][[tableauRecap[indModSel,4]]] |
| 129 | } |