| 1 | #' getNeighborsJumpPredict |
| 2 | #' |
| 3 | #' Apply optimized weights on gaps observed on selected neighbors. |
| 4 | #' This jump prediction method can only be used in conjunction with the Neighbors |
| 5 | #' Forecaster, because it makes use of the optimized parameters to re-apply the weights |
| 6 | #' on the jumps observed at days interfaces of the past neighbors. |
| 7 | #' |
| 8 | #' @inheritParams computeForecast |
| 9 | #' @inheritParams getZeroJumpPredict |
| 10 | #' |
| 11 | #' @aliases J_Neighbors |
| 12 | #' |
| 13 | getNeighborsJumpPredict = function(data, today, memory, predict_from, horizon, |
| 14 | params, ...) |
| 15 | { |
| 16 | first_day = max(1, today-memory) |
| 17 | filter = (params$indices >= first_day) |
| 18 | indices = params$indices[filter] |
| 19 | weights = params$weights[filter] |
| 20 | |
| 21 | gaps = sapply(indices, function(i) { |
| 22 | if (predict_from >= 2) |
| 23 | data$getSerie(i)[predict_from] - data$getSerie(i)[predict_from-1] |
| 24 | else |
| 25 | head(data$getSerie(i),1) - tail(data$getSerie(i-1),1) |
| 26 | }) |
| 27 | scal_product = weights * gaps |
| 28 | norm_fact = sum( weights[!is.na(scal_product)] ) |
| 29 | sum(scal_product, na.rm=TRUE) / norm_fact |
| 30 | } |