Commit | Line | Data |
---|---|---|
25b75559 | 1 | #' Neighbors Forecaster |
3d69ff21 | 2 | #' |
c4c329f6 BA |
3 | #' Predict next serie as a weighted combination of "futures of the past" days, |
4 | #' where days in the past are chosen and weighted according to some similarity measures. | |
c4c329f6 | 5 | #' |
102bcfda | 6 | #' The main method is \code{predictShape()}, taking arguments data, today, memory, |
d2ab47a7 BA |
7 | #' predict_from, horizon respectively for the dataset (object output of |
8 | #' \code{getData()}), the current index, the data depth (in days), the first predicted | |
9 | #' hour and the last predicted hour. | |
102bcfda BA |
10 | #' In addition, optional arguments can be passed: |
11 | #' \itemize{ | |
12 | #' \item local : TRUE (default) to constrain neighbors to be "same days within same | |
13 | #' season" | |
14 | #' \item simtype : 'endo' for a similarity based on the series only,<cr> | |
d2ab47a7 | 15 | #' 'exo' for a similarity based on exogenous variables only,<cr> |
102bcfda BA |
16 | #' 'mix' for the product of 'endo' and 'exo',<cr> |
17 | #' 'none' (default) to apply a simple average: no computed weights | |
18 | #' \item window : A window for similarities computations; override cross-validation | |
19 | #' window estimation. | |
20 | #' } | |
21 | #' The method is summarized as follows: | |
22 | #' \enumerate{ | |
23 | #' \item Determine N (=20) recent days without missing values, and followed by a | |
24 | #' tomorrow also without missing values. | |
25 | #' \item Optimize the window parameters (if relevant) on the N chosen days. | |
26 | #' \item Considering the optimized window, compute the neighbors (with locality | |
27 | #' constraint or not), compute their similarities -- using a gaussian kernel if | |
28 | #' simtype != "none" -- and average accordingly the "tomorrows of neigbors" to | |
29 | #' obtain the final prediction. | |
30 | #' } | |
c4c329f6 | 31 | #' |
4e821712 | 32 | #' @usage # NeighborsForecaster$new(pjump) |
689aa1d3 | 33 | #' |
102bcfda | 34 | #' @docType class |
c4c329f6 | 35 | #' @format R6 class, inherits Forecaster |
3ddf1c12 | 36 | #' @aliases F_Neighbors |
546b0cb6 | 37 | #' |
25b75559 | 38 | NeighborsForecaster = R6::R6Class("NeighborsForecaster", |
a66a84b5 | 39 | inherit = Forecaster, |
25b75559 BA |
40 | |
41 | public = list( | |
d2ab47a7 | 42 | predictShape = function(data, today, memory, predict_from, horizon, ...) |
3d69ff21 BA |
43 | { |
44 | # (re)initialize computed parameters | |
a66a84b5 | 45 | private$.params <- list("weights"=NA, "indices"=NA, "window"=NA) |
3d69ff21 | 46 | |
a5a3a294 | 47 | # Do not forecast on days with NAs (TODO: softer condition...) |
cf3bb001 BA |
48 | if (any(is.na(data$getSerie(today-1))) || |
49 | (predict_from>=2 && any(is.na(data$getSerie(today)[1:(predict_from-1)])))) | |
d2ab47a7 | 50 | { |
a5a3a294 | 51 | return (NA) |
d2ab47a7 | 52 | } |
a5a3a294 | 53 | |
f17665c7 | 54 | # Get optional args |
445e7bbc BA |
55 | local = ifelse(hasArg("local"), list(...)$local, TRUE) #same level + season? |
56 | simtype = ifelse(hasArg("simtype"), list(...)$simtype, "none") #or "endo", or "exo" | |
638f27f4 BA |
57 | opera = ifelse(hasArg("opera"), list(...)$opera, FALSE) #operational mode? |
58 | ||
59 | # Determine indices of no-NAs days preceded by no-NAs yerstedays | |
60 | tdays = .getNoNA2(data, max(today-memory,2), ifelse(opera,today-1,data$getSize())) | |
61 | if (!opera) | |
62 | tdays = setdiff(tdays, today) #always exclude current day | |
63 | ||
64 | # Shortcut if window is known | |
aa059de7 | 65 | if (hasArg("window")) |
a66a84b5 | 66 | { |
638f27f4 BA |
67 | return ( private$.predictShapeAux(data, tdays, today, predict_from, horizon, |
68 | local, list(...)$window, simtype, opera, TRUE) ) | |
a66a84b5 | 69 | } |
3d69ff21 | 70 | |
6774e53d | 71 | # Indices of similar days for cross-validation; TODO: 20 = magic number |
aa059de7 | 72 | cv_days = getSimilarDaysIndices(today, data, limit=20, same_season=FALSE, |
638f27f4 | 73 | days_in=tdays, operational=opera) |
5e838b3e | 74 | |
445e7bbc | 75 | # Optimize h : h |--> sum of prediction errors on last N "similar" days |
aa059de7 | 76 | errorOnLastNdays = function(window, simtype) |
3d69ff21 BA |
77 | { |
78 | error = 0 | |
79 | nb_jours = 0 | |
5e838b3e | 80 | for (i in seq_along(cv_days)) |
3d69ff21 | 81 | { |
f17665c7 | 82 | # mix_strategy is never used here (simtype != "mix"), therefore left blank |
cf3bb001 | 83 | prediction = private$.predictShapeAux(data, tdays, cv_days[i], predict_from, |
638f27f4 | 84 | horizon, local, window, simtype, opera, FALSE) |
f17665c7 | 85 | if (!is.na(prediction[1])) |
3d69ff21 BA |
86 | { |
87 | nb_jours = nb_jours + 1 | |
af3b84f4 | 88 | error = error + |
cf3bb001 | 89 | mean((data$getSerie(cv_days[i])[predict_from:horizon] - prediction)^2) |
3d69ff21 BA |
90 | } |
91 | } | |
92 | return (error / nb_jours) | |
93 | } | |
94 | ||
445e7bbc | 95 | # TODO: 7 == magic number |
eef54517 | 96 | if (simtype=="endo" || simtype=="mix") |
af3b84f4 | 97 | { |
aa059de7 BA |
98 | best_window_endo = optimize( |
99 | errorOnLastNdays, c(0,7), simtype="endo")$minimum | |
af3b84f4 | 100 | } |
eef54517 | 101 | if (simtype=="exo" || simtype=="mix") |
af3b84f4 | 102 | { |
eef54517 BA |
103 | best_window_exo = optimize( |
104 | errorOnLastNdays, c(0,7), simtype="exo")$minimum | |
3d69ff21 | 105 | } |
eef54517 BA |
106 | |
107 | best_window = | |
108 | if (simtype == "endo") | |
109 | best_window_endo | |
110 | else if (simtype == "exo") | |
111 | best_window_exo | |
112 | else if (simtype == "mix") | |
113 | c(best_window_endo,best_window_exo) | |
114 | else #none: value doesn't matter | |
115 | 1 | |
116 | ||
cf3bb001 | 117 | return( private$.predictShapeAux(data, tdays, today, predict_from, horizon, local, |
638f27f4 | 118 | best_window, simtype, opera, TRUE) ) |
25b75559 BA |
119 | } |
120 | ), | |
121 | private = list( | |
638f27f4 | 122 | # Precondition: "yersteday until predict_from-1" is full (no NAs) |
cf3bb001 | 123 | .predictShapeAux = function(data, tdays, today, predict_from, horizon, local, window, |
638f27f4 | 124 | simtype, opera, final_call) |
3d69ff21 | 125 | { |
638f27f4 BA |
126 | tdays_cut = tdays[ tdays != today ] |
127 | if (length(tdays_cut) == 0) | |
3d69ff21 BA |
128 | return (NA) |
129 | ||
aa059de7 BA |
130 | if (local) |
131 | { | |
3ddf1c12 | 132 | # TODO: 60 == magic number |
cf3bb001 | 133 | tdays = getSimilarDaysIndices(today, data, limit=60, same_season=TRUE, |
638f27f4 BA |
134 | days_in=tdays_cut, operational=opera) |
135 | # if (length(tdays) <= 1) | |
136 | # return (NA) | |
137 | # TODO: 10 == magic number | |
138 | tdays = .getConstrainedNeighbs(today, data, tdays, min_neighbs=10) | |
cf3bb001 | 139 | if (length(tdays) == 1) |
aa059de7 BA |
140 | { |
141 | if (final_call) | |
142 | { | |
143 | private$.params$weights <- 1 | |
cf3bb001 | 144 | private$.params$indices <- tdays |
aa059de7 BA |
145 | private$.params$window <- 1 |
146 | } | |
cf3bb001 | 147 | return ( data$getSerie(tdays[1])[predict_from:horizon] ) |
aa059de7 BA |
148 | } |
149 | } | |
150 | else | |
cf3bb001 | 151 | tdays = tdays_cut #no conditioning |
aa059de7 | 152 | |
445e7bbc | 153 | if (simtype == "endo" || simtype == "mix") |
3d69ff21 | 154 | { |
aa059de7 BA |
155 | # Compute endogen similarities using given window |
156 | window_endo = ifelse(simtype=="mix", window[1], window) | |
3d69ff21 | 157 | |
638f27f4 BA |
158 | # Distances from last observed day to selected days in the past |
159 | distances2 <- .computeDistsEndo(data, today, tdays, predict_from) | |
160 | ||
161 | if (local) | |
162 | { | |
163 | max_neighbs = 12 #TODO: 12 = arbitrary number | |
164 | if (length(distances2) > max_neighbs) | |
165 | { | |
166 | ordering <- order(distances2) | |
167 | tdays <- tdays[ ordering[1:max_neighbs] ] | |
168 | distances2 <- distances2[ ordering[1:max_neighbs] ] | |
169 | } | |
170 | } | |
3d69ff21 | 171 | |
3ddf1c12 | 172 | simils_endo <- .computeSimils(distances2, window_endo) |
3d69ff21 BA |
173 | } |
174 | ||
445e7bbc | 175 | if (simtype == "exo" || simtype == "mix") |
3d69ff21 | 176 | { |
aa059de7 | 177 | # Compute exogen similarities using given window |
445e7bbc | 178 | window_exo = ifelse(simtype=="mix", window[2], window) |
3d69ff21 | 179 | |
638f27f4 | 180 | distances2 <- .computeDistsExo(data, today, tdays) |
3d69ff21 | 181 | |
3ddf1c12 | 182 | simils_exo <- .computeSimils(distances2, window_exo) |
3d69ff21 BA |
183 | } |
184 | ||
3d69ff21 | 185 | similarities = |
f17665c7 | 186 | if (simtype == "exo") |
3d69ff21 | 187 | simils_exo |
f17665c7 BA |
188 | else if (simtype == "endo") |
189 | simils_endo | |
445e7bbc | 190 | else if (simtype == "mix") |
f17665c7 | 191 | simils_endo * simils_exo |
445e7bbc | 192 | else #none |
cf3bb001 | 193 | rep(1, length(tdays)) |
ea5c7e56 | 194 | similarities = similarities / sum(similarities) |
3d69ff21 | 195 | |
d2ab47a7 | 196 | prediction = rep(0, horizon-predict_from+1) |
cf3bb001 | 197 | for (i in seq_along(tdays)) |
d2ab47a7 BA |
198 | { |
199 | prediction = prediction + | |
cf3bb001 | 200 | similarities[i] * data$getSerie(tdays[i])[predict_from:horizon] |
d2ab47a7 | 201 | } |
99f83c9a | 202 | |
3d69ff21 BA |
203 | if (final_call) |
204 | { | |
a66a84b5 | 205 | private$.params$weights <- similarities |
cf3bb001 | 206 | private$.params$indices <- tdays |
a66a84b5 | 207 | private$.params$window <- |
546b0cb6 | 208 | if (simtype=="endo") |
aa059de7 | 209 | window_endo |
546b0cb6 | 210 | else if (simtype=="exo") |
aa059de7 | 211 | window_exo |
eef54517 | 212 | else if (simtype=="mix") |
aa059de7 | 213 | c(window_endo,window_exo) |
eef54517 BA |
214 | else #none |
215 | 1 | |
3d69ff21 | 216 | } |
99f83c9a | 217 | |
3d69ff21 BA |
218 | return (prediction) |
219 | } | |
220 | ) | |
221 | ) | |
3ddf1c12 | 222 | |
689aa1d3 BA |
223 | # getConstrainedNeighbs |
224 | # | |
225 | # Get indices of neighbors of similar pollution level (among same season + day type). | |
226 | # | |
227 | # @param today Index of current day | |
228 | # @param data Object of class Data | |
cf3bb001 | 229 | # @param tdays Current set of "second days" (no-NA pairs) |
689aa1d3 BA |
230 | # @param min_neighbs Minimum number of points in a neighborhood |
231 | # @param max_neighbs Maximum number of points in a neighborhood | |
232 | # | |
638f27f4 | 233 | .getConstrainedNeighbs = function(today, data, tdays, min_neighbs=10) |
3ddf1c12 | 234 | { |
d2ab47a7 | 235 | levelToday = data$getLevelHat(today) |
638f27f4 | 236 | # levelYersteday = data$getLevel(today-1) |
cf3bb001 | 237 | distances = sapply(tdays, function(i) { |
638f27f4 BA |
238 | # sqrt((data$getLevel(i-1)-levelYersteday)^2 + (data$getLevel(i)-levelToday)^2) |
239 | abs(data$getLevel(i)-levelToday) | |
d2ab47a7 BA |
240 | }) |
241 | #TODO: 1, +1, +3 : magic numbers | |
242 | dist_thresh = 1 | |
cf3bb001 | 243 | min_neighbs = min(min_neighbs,length(tdays)) |
3ddf1c12 BA |
244 | repeat |
245 | { | |
246 | same_pollution = (distances <= dist_thresh) | |
247 | nb_neighbs = sum(same_pollution) | |
248 | if (nb_neighbs >= min_neighbs) #will eventually happen | |
249 | break | |
d2ab47a7 | 250 | dist_thresh = dist_thresh + ifelse(dist_thresh>1,3,1) |
3ddf1c12 | 251 | } |
cf3bb001 | 252 | tdays = tdays[same_pollution] |
638f27f4 BA |
253 | # max_neighbs = 12 |
254 | # if (nb_neighbs > max_neighbs) | |
255 | # { | |
256 | # # Keep only max_neighbs closest neighbors | |
257 | # tdays = tdays[ order(distances[same_pollution])[1:max_neighbs] ] | |
258 | # } | |
cf3bb001 | 259 | tdays |
3ddf1c12 BA |
260 | } |
261 | ||
689aa1d3 BA |
262 | # compute similarities |
263 | # | |
264 | # Apply the gaussian kernel on computed squared distances. | |
265 | # | |
266 | # @param distances2 Squared distances | |
267 | # @param window Window parameter for the kernel | |
268 | # | |
3ddf1c12 BA |
269 | .computeSimils <- function(distances2, window) |
270 | { | |
271 | sd_dist = sd(distances2) | |
272 | if (sd_dist < .25 * sqrt(.Machine$double.eps)) | |
273 | { | |
274 | # warning("All computed distances are very close: stdev too small") | |
275 | sd_dist = 1 #mostly for tests... FIXME: | |
276 | } | |
277 | exp(-distances2/(sd_dist*window^2)) | |
278 | } | |
638f27f4 BA |
279 | |
280 | .computeDistsEndo <- function(data, today, tdays, predict_from) | |
281 | { | |
282 | lastSerie = c( data$getSerie(today-1), | |
283 | data$getSerie(today)[if (predict_from>=2) 1:(predict_from-1) else c()] ) | |
284 | sapply(tdays, function(i) { | |
285 | delta = lastSerie - c(data$getSerie(i-1), | |
286 | data$getSerie(i)[if (predict_from>=2) 1:(predict_from-1) else c()]) | |
287 | sqrt(mean(delta^2)) | |
288 | }) | |
289 | } | |
290 | ||
291 | .computeDistsExo <- function(data, today, tdays) | |
292 | { | |
293 | M = matrix( ncol=1+length(tdays), nrow=1+length(data$getExo(1)) ) | |
294 | M[,1] = c( data$getLevelHat(today), as.double(data$getExoHat(today)) ) | |
295 | for (i in seq_along(tdays)) | |
296 | M[,i+1] = c( data$getLevel(tdays[i]), as.double(data$getExo(tdays[i])) ) | |
297 | ||
298 | sigma = cov(t(M)) #NOTE: robust covariance is way too slow | |
299 | # TODO: 10 == magic number; more robust way == det, or always ginv() | |
300 | sigma_inv = | |
301 | if (length(tdays) > 10) | |
302 | solve(sigma) | |
303 | else | |
304 | MASS::ginv(sigma) | |
305 | ||
306 | # Distances from last observed day to days in the past | |
307 | sapply(seq_along(tdays), function(i) { | |
308 | delta = M[,1] - M[,i+1] | |
309 | delta %*% sigma_inv %*% delta | |
310 | }) | |
311 | } |