Commit | Line | Data |
---|---|---|
7b13d0c2 | 1 | # Cluster one full task (nb_curves / ntasks series) |
e205f218 | 2 | clusteringTask = function(indices,getSeries,getSeriesForSynchrones,synchrones_file, |
3eef8d3d | 3 | getCoefs,K1,K2,nb_series_per_chunk,ncores,to_file,ftype) |
5c652979 | 4 | { |
0e2dce80 | 5 | cl = parallel::makeCluster(ncores) |
7b13d0c2 BA |
6 | repeat |
7 | { | |
e205f218 | 8 | nb_workers = max( 1, round( length(indices) / nb_series_per_chunk ) ) |
48108c39 | 9 | indices_workers = lapply(seq_len(nb_workers), function(i) { |
7b13d0c2 | 10 | upper_bound = ifelse( i<nb_workers, |
e205f218 BA |
11 | min(nb_series_per_chunk*i,length(indices)), length(indices) ) |
12 | indices[(nb_series_per_chunk*(i-1)+1):upper_bound] | |
48108c39 | 13 | }) |
e205f218 BA |
14 | indices = unlist( parallel::parLapply(cl, indices_workers, function(inds) |
15 | computeClusters1(inds, getCoefs, K1)) ) | |
0e2dce80 | 16 | if (length(indices_clust) == K1) |
7b13d0c2 BA |
17 | break |
18 | } | |
e205f218 BA |
19 | parallel::stopCluster(cl) |
20 | if (K2 == 0) | |
21 | return (indices) | |
3eef8d3d BA |
22 | computeClusters2(indices, K2, getSeries, getSeriesForSynchrones, to_file, |
23 | nb_series_per_chunk,ftype) | |
e205f218 | 24 | vector("integer",0) |
5c652979 BA |
25 | } |
26 | ||
0e2dce80 BA |
27 | # Apply the clustering algorithm (PAM) on a coeffs or distances matrix |
28 | computeClusters1 = function(indices, getCoefs, K1) | |
e205f218 BA |
29 | { |
30 | coefs = getCoefs(indices) | |
31 | indices[ cluster::pam(coefs, K1, diss=FALSE)$id.med ] | |
32 | } | |
0e2dce80 | 33 | |
7b13d0c2 | 34 | # Cluster a chunk of series inside one task (~max nb_series_per_chunk) |
3eef8d3d BA |
35 | computeClusters2 = function(indices, K2, getSeries, getSeriesForSynchrones, to_file, |
36 | nb_series_per_chunk, ftype) | |
5c652979 | 37 | { |
3eef8d3d | 38 | curves = computeSynchrones(indices, getSeries, getSeriesForSynchrones, nb_series_per_chunk) |
e205f218 BA |
39 | dists = computeWerDists(curves) |
40 | medoids = cluster::pam(dists, K2, diss=TRUE)$medoids | |
41 | if (to_file) | |
5c652979 | 42 | { |
3eef8d3d | 43 | serialize(medoids, synchrones_file, ftype, nb_series_per_chunk) |
e205f218 | 44 | return (NULL) |
5c652979 | 45 | } |
e205f218 | 46 | medoids |
5c652979 BA |
47 | } |
48 | ||
7b13d0c2 | 49 | # Compute the synchrones curves (sum of clusters elements) from a clustering result |
3eef8d3d | 50 | computeSynchrones = function(indices, getSeries, getSeriesForSynchrones, nb_series_per_chunk) |
e205f218 BA |
51 | { |
52 | #les getSeries(indices) sont les medoides --> init vect nul pour chacun, puis incr avec les | |
53 | #courbes (getSeriesForSynchrones) les plus proches... --> au sens de la norme L2 ? | |
3eef8d3d BA |
54 | medoids = getSeries(indices) |
55 | K = nrow(medoids) | |
56 | synchrones = matrix(0, nrow=K, ncol=ncol(medoids)) | |
57 | counts = rep(0,K) | |
58 | index = 1 | |
59 | repeat | |
60 | { | |
61 | series = getSeriesForSynchrones((index-1)+seq_len(nb_series_per_chunk)) | |
62 | if (is.null(series)) | |
63 | break | |
64 | #get medoids indices for this chunk of series | |
65 | index = which.min( rowSums( sweep(medoids, 2, series[i,], '-')^2 ) ) | |
66 | synchrones[index,] = synchrones[index,] + series[i,] | |
67 | counts[index] = counts[index] + 1 | |
68 | } | |
69 | #NOTE: odds for some clusters to be empty? (when series already come from stage 2) | |
70 | synchrones = sweep(synchrones, 1, counts, '/') | |
e205f218 | 71 | } |
1c6f223e | 72 | |
e205f218 | 73 | # Compute the WER distance between the synchrones curves (in rows) |
7b13d0c2 | 74 | computeWerDist = function(curves) |
d03c0621 | 75 | { |
5c652979 BA |
76 | if (!require("Rwave", quietly=TRUE)) |
77 | stop("Unable to load Rwave library") | |
7b13d0c2 BA |
78 | n <- nrow(curves) |
79 | delta <- ncol(curves) | |
db6fc17d | 80 | #TODO: automatic tune of all these parameters ? (for other users) |
d03c0621 | 81 | nvoice <- 4 |
7b13d0c2 | 82 | # noctave = 2^13 = 8192 half hours ~ 180 days ; ~log2(ncol(curves)) |
d7d55bc1 BA |
83 | noctave = 13 |
84 | # 4 here represent 2^5 = 32 half-hours ~ 1 day | |
db6fc17d BA |
85 | #NOTE: default scalevector == 2^(0:(noctave * nvoice) / nvoice) * s0 (?) |
86 | scalevector <- 2^(4:(noctave * nvoice) / nvoice) * 2 | |
87 | #condition: ( log2(s0*w0/(2*pi)) - 1 ) * nvoice + 1.5 >= 1 | |
88 | s0=2 | |
89 | w0=2*pi | |
90 | scaled=FALSE | |
91 | s0log = as.integer( (log2( s0*w0/(2*pi) ) - 1) * nvoice + 1.5 ) | |
92 | totnoct = noctave + as.integer(s0log/nvoice) + 1 | |
93 | ||
94 | # (normalized) observations node with CWT | |
95 | Xcwt4 <- lapply(seq_len(n), function(i) { | |
e205f218 | 96 | ts <- scale(ts(curves[i,]), center=TRUE, scale=scaled) |
db6fc17d BA |
97 | totts.cwt = Rwave::cwt(ts,totnoct,nvoice,w0,plot=0) |
98 | ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)] | |
99 | #Normalization | |
100 | sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0) | |
101 | sqres <- sweep(ts.cwt,MARGIN=2,sqs,'*') | |
102 | sqres / max(Mod(sqres)) | |
103 | }) | |
3ccd1e39 | 104 | |
db6fc17d BA |
105 | Xwer_dist <- matrix(0., n, n) |
106 | fcoefs = rep(1/3, 3) #moving average on 3 values (TODO: very slow! correct?!) | |
107 | for (i in 1:(n-1)) | |
1c6f223e | 108 | { |
db6fc17d | 109 | for (j in (i+1):n) |
d03c0621 | 110 | { |
0e2dce80 | 111 | #TODO: later, compute CWT here (because not enough storage space for 200k series) |
db6fc17d BA |
112 | # 'circular=TRUE' is wrong, should just take values on the sides; to rewrite in C |
113 | num <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE) | |
114 | WX <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[i]])), fcoefs, circular=TRUE) | |
115 | WY <- filter(Mod(Xcwt4[[j]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE) | |
116 | wer2 <- sum(colSums(num)^2) / sum( sum(colSums(WX) * colSums(WY)) ) | |
117 | Xwer_dist[i,j] <- sqrt(delta * ncol(Xcwt4[[1]]) * (1 - wer2)) | |
118 | Xwer_dist[j,i] <- Xwer_dist[i,j] | |
d03c0621 | 119 | } |
1c6f223e | 120 | } |
d03c0621 | 121 | diag(Xwer_dist) <- numeric(n) |
c6556868 | 122 | Xwer_dist |
1c6f223e | 123 | } |