Commit | Line | Data |
---|---|---|
086ca318 BA |
1 | #' valse |
2 | #' | |
3 | #' Main function | |
4 | #' | |
5 | #' @param X matrix of covariates (of size n*p) | |
6 | #' @param Y matrix of responses (of size n*m) | |
7 | #' @param procedure among 'LassoMLE' or 'LassoRank' | |
8 | #' @param selecMod method to select a model among 'DDSE', 'DJump', 'BIC' or 'AIC' | |
9 | #' @param gamma integer for the power in the penaly, by default = 1 | |
10 | #' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10 | |
11 | #' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100 | |
12 | #' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4 | |
13 | #' @param kmin integer, minimum number of clusters, by default = 2 | |
14 | #' @param kmax integer, maximum number of clusters, by default = 10 | |
15 | #' @param rang.min integer, minimum rank in the low rank procedure, by default = 1 | |
16 | #' @param rang.max integer, maximum rank in the | |
17 | #' | |
18 | #' @return a list with estimators of parameters | |
19 | #' | |
20 | #' @examples | |
21 | #' #TODO: a few examples | |
22 | #' @export | |
2279a641 BA |
23 | valse = function(X, Y, procedure='LassoMLE', selecMod='DDSE', gamma=1, mini=10, maxi=50, |
24 | eps=1e-4, kmin=2, kmax=2, rang.min=1, rang.max=10, ncores_outer=1, ncores_inner=3, | |
25 | verbose=FALSE) | |
086ca318 | 26 | { |
086ca318 BA |
27 | p = dim(X)[2] |
28 | m = dim(Y)[2] | |
29 | n = dim(X)[1] | |
4cc632c9 | 30 | |
4cc632c9 BA |
31 | if (verbose) |
32 | print("main loop: over all k and all lambda") | |
33 | ||
2279a641 | 34 | if (ncores_outer > 1) |
086ca318 | 35 | { |
2279a641 | 36 | cl = parallel::makeCluster(ncores_outer) |
4cc632c9 BA |
37 | parallel::clusterExport( cl=cl, envir=environment(), varlist=c("X","Y","procedure", |
38 | "selecMod","gamma","mini","maxi","eps","kmin","kmax","rang.min","rang.max", | |
2279a641 | 39 | "ncores_outer","ncores_inner","verbose","p","m","k","tableauRecap") ) |
4cc632c9 BA |
40 | } |
41 | ||
0eb161e3 BA |
42 | # Compute models with k components |
43 | computeModels <- function(k) | |
4cc632c9 | 44 | { |
2279a641 | 45 | if (ncores_outer > 1) |
4cc632c9 BA |
46 | require("valse") #nodes start with an empty environment |
47 | ||
48 | if (verbose) | |
49 | print(paste("Parameters initialization for k =",k)) | |
0eb161e3 | 50 | #smallEM initializes parameters by k-means and regression model in each component, |
086ca318 BA |
51 | #doing this 20 times, and keeping the values maximizing the likelihood after 10 |
52 | #iterations of the EM algorithm. | |
4cc632c9 BA |
53 | P = initSmallEM(k, X, Y) |
54 | grid_lambda <- computeGridLambda(P$phiInit, P$rhoInit, P$piInit, P$gamInit, X, Y, | |
55 | gamma, mini, maxi, eps) | |
4cc632c9 | 56 | # TODO: 100 = magic number |
086ca318 BA |
57 | if (length(grid_lambda)>100) |
58 | grid_lambda = grid_lambda[seq(1, length(grid_lambda), length.out = 100)] | |
4cc632c9 BA |
59 | |
60 | if (verbose) | |
61 | print("Compute relevant parameters") | |
086ca318 | 62 | #select variables according to each regularization parameter |
0eb161e3 BA |
63 | #from the grid: S$selected corresponding to selected variables |
64 | S = selectVariables(P$phiInit, P$rhoInit, P$piInit, P$gamInit, mini, maxi, gamma, | |
65 | grid_lambda, X, Y, 1e-8, eps, ncores_inner) #TODO: 1e-8 as arg?! eps? | |
4cc632c9 | 66 | |
086ca318 | 67 | if (procedure == 'LassoMLE') |
39046da6 | 68 | { |
4cc632c9 BA |
69 | if (verbose) |
70 | print('run the procedure Lasso-MLE') | |
086ca318 BA |
71 | #compute parameter estimations, with the Maximum Likelihood |
72 | #Estimator, restricted on selected variables. | |
0eb161e3 | 73 | models <- constructionModelesLassoMLE(phiInit, rhoInit, piInit, gamInit, mini, |
2279a641 | 74 | maxi, gamma, X, Y, thresh, eps, S$selected, ncores_inner, verbose) |
086ca318 BA |
75 | } |
76 | else | |
39046da6 | 77 | { |
4cc632c9 BA |
78 | if (verbose) |
79 | print('run the procedure Lasso-Rank') | |
086ca318 BA |
80 | #compute parameter estimations, with the Low Rank |
81 | #Estimator, restricted on selected variables. | |
0eb161e3 | 82 | models <- constructionModelesLassoRank(S$Pi, S$Rho, mini, maxi, X, Y, eps, A1, |
2279a641 | 83 | rank.min, rank.max, ncores_inner, verbose) |
086ca318 | 84 | } |
0eb161e3 | 85 | models |
086ca318 | 86 | } |
4cc632c9 | 87 | |
0eb161e3 BA |
88 | # List (index k) of lists (index lambda) of models |
89 | models_list <- | |
19041906 | 90 | #if (ncores_k > 1) |
91 | if (ncores_outer > 1) | |
0eb161e3 | 92 | parLapply(cl, kmin:kmax, computeModels) |
4cc632c9 | 93 | else |
0eb161e3 | 94 | lapply(kmin:kmax, computeModels) |
19041906 | 95 | #if (ncores_k > 1) |
96 | if (ncores_outer > 1) | |
4cc632c9 BA |
97 | parallel::stopCluster(cl) |
98 | ||
0eb161e3 BA |
99 | if (! requireNamespace("capushe", quietly=TRUE)) |
100 | { | |
101 | warning("'capushe' not available: returning all models") | |
102 | return (models_list) | |
103 | } | |
104 | ||
105 | # Get summary "tableauRecap" from models ; TODO: jusqu'à ligne 114 à mon avis là c'est faux :/ | |
106 | tableauRecap = t( sapply( models_list, function(models) { | |
19041906 | 107 | llh = do.call(rbind, lapply(models, function(model) model$llh)) |
2279a641 BA |
108 | LLH = llh[-1,1] |
109 | D = llh[-1,2] | |
110 | c(LLH, D, rep(k, length(model)), 1:length(model)) | |
19041906 | 111 | } )) |
4cc632c9 BA |
112 | if (verbose) |
113 | print('Model selection') | |
086ca318 | 114 | tableauRecap = tableauRecap[rowSums(tableauRecap[, 2:4])!=0,] |
0eb161e3 | 115 | tableauRecap = tableauRecap[!is.infinite(tableauRecap[,1]),] |
086ca318 | 116 | data = cbind(1:dim(tableauRecap)[1], tableauRecap[,2], tableauRecap[,2], tableauRecap[,1]) |
4cc632c9 | 117 | |
0eb161e3 | 118 | modSel = capushe::capushe(data, n) |
086ca318 BA |
119 | indModSel <- |
120 | if (selecMod == 'DDSE') | |
121 | as.numeric(modSel@DDSE@model) | |
122 | else if (selecMod == 'Djump') | |
123 | as.numeric(modSel@Djump@model) | |
124 | else if (selecMod == 'BIC') | |
125 | modSel@BIC_capushe$model | |
126 | else if (selecMod == 'AIC') | |
127 | modSel@AIC_capushe$model | |
128 | model[[tableauRecap[indModSel,3]]][[tableauRecap[indModSel,4]]] | |
129 | } |